
AD-A260 567
ß<lo *&%*-&-

in im im um lim

PURDUE UNIVERSITY
SCHOOL OF AERONAUTICS AND ASTRONAUTICS

A Hierarchical Target Extraction,
Recognition, and Tracking (HiTert) System

by
Jun Lu

Dominick Andrisani, II
and M. Fernando Tenorio

March 31,1992

TRIBOx.^M STATEMENT

'proved foi public release)
~iBtribiifiga,r

Final Report to the U. S. Army Research Office
Contract No. DAAL03-89-K-0086

.ec^ DTIC
FEB191993

E

S3-Q3350
lllllllll

1282 Grissom Hall
West Lafayette, Indiana 47907-1282

\>V? v)

33 % IB ölig

A Hierarchical Target Extraction,
Recognition, and Tracking (HiTert) System

by
Jun Lu

Dominick Andrisani, II
and M. Fernando Tenorio

March 31, 1992

Final Report to the U. S. Army Research Office
Contract No. DAAL03-89-K-0086

School of Aeronautics and Astronautics,
and School of Electrical Engineering

Purdue University
West Lafayette, IN

47907

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

*V ('

REPORT DOCUMENTATION PAGE
Form 4pprovec/

OMB No 07040188

PuWic Kooning burden *0' t*n co<i*ction at ntcfmatio* \ «tim«i*<3 tc *.*'ige ' ">owr o«' '«©or* nciuam^ t*e n«» 'or -evwcnq <n*irwC!io^ «»rch.nq *i jtnq ^ji* «Jure«
qaxhtrtnq »Mt m*inu<mrtg t*e<jjt* n««<J««d. »na co«»©**t»«g *r»o review^q tn» :oiiMiion o* m*orTijtion Serxs (om«fm> '«irämg th.» Doraen numn» or »ny ;ihff «KWCI 3» •*>»
cotlfCtto« of mfwmatioo. including »ugg«tiom *o' reduong thi% WJ'Q** TO Aj»rnngton neidouaaen V^-vicw. Directorate »or ofo'T'atiO" Operation *r»d "eocn» 12 'S ,et*ervsr
0«vl$Hiqhy»«V.S«'te 1204. Arlington. VA 222C2-4J02 »f>dtO theO^'Ceo'Mjn*qe^f«t «nd Budq«t Paperwork ««Jurt'O* Project (0?04-01$8) irVaUi.rugton DC 7OS03

13. REPORT TYPE AH 1. AGENCY USE ONLY (Lwt bitnk) 2. REPORT DATE

3/31/92
3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE
A Hierarchical Target Extraction, Recognition and
Tracking (HiTert) System

bflfiLoZ'8°i-k-ooH
6. AUTHOR(S)
Jun Lu, Dominick Andrisani II, and M. Fernando Tenorio

5/ FUNDING NUMBERS
2—

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
School of Aeronautics and Astronautics
and School of Electrical Engineering
Purdue University
West Lafayette, IN 47907

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND AODRESS(ES)

U. S. Army Research Office
P. O. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ßßo a&m.S'£c

11. SUPPLEMENTARY NOTES

The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200words) This research contributed to the development of a
hierarchical target extraction, identification, and tracking system
based on imaging sensors. The work suggests that passive tracking of
ground targets is a desirable possibility. Our work involved 1) computer
rendering of a color image database containing 1000 images of a
maneuvering tank; 2) the use of image derived data to help track a
violently maneuvering tank; 3) the use of the Cantata Visual programming
Language to design the multiple interconnected algorithms in an
intuitive and extensible manner; 4) the delivery of this software to the
U. S. Army Armament Research and Development Center (ARDEC) at Picatinny
Arsenal, New Jersey; and 5) presenting of a one day short course to
engineers at ARDEC concerning the design and use of the software. This
final report describes that software. Our research has suggested the
need for the following future work: 1) improved realism in the computer
generated image database; 2) development of additional higher level
image processing and tracking modules using Cantata; and 4)
implementation of a way to communicate between competing algorithms.

14. SUBJECT TERMS

target tracking, image processing, optical tracking
15. NUMBER OF PAGES

124
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standa'd Form 298 (Rev 2-89)

298 102

Contents

1 Introduction 1

1.1 Structure of the HiTert System 1

1.2 Scenario Under Consideration 3

1.3 Some Implementation Issues 5

1.3.1 A Generic Subsystem 5

1.3.2 Non-real Time Simulation 7

1.4 Development Environment 9

1.4.1 Hardware Architecture 9

1.4.2 Interprocess Communication(IPC) 9

1.4.3 Cantata Visual Programming Language 10

2 Installation Guide 11

2.1 Platform Requirements 11

2.2 Unpack the Source 12

2.3 Installation Environment Variables 12

2.4 Compilation and Installation . . 13

3 Getting Started 14

3.1 X Window System 14

3.2 Khoros System 14

3.3 Environment Variables for the HiTert System lb

3.4 Command Line Interface 17

CONTENTS ii

3.5 Cantata Visual Language Interface 19

4 User's Guide 21
4.1 Overview of the Software Modules 21

4.2 Data Control Module 24

4.2.1 Introduction 24

4.2.2 Command Line Options 25

4.2.3 I/O File Specification 28

4.3 World-view Camera 35

4.3.1 Introduction 35

4.3.2 Command Line Options 36

4.3.3 I/O File Specification 39

4.4 Tracking Camera 41

4.4.1 Introduction 41

4.4.2 Command Line Options 42

4.4.3 I/O File Specification 43

4.5 Image Processor 44

4.5.1 Introduction 44

4.5.2 Command Line Options 44

4.5.3 I/O File Specification 49

4.6 Tracker 52

4.6.1 Introduction 52

4.6.2 Command Line Options 52

4.6.3 I/O File Specification 53

4.7 Predictor 55

4.7.1 Introduction 55

4.7.2 Command Line Options 56

4.7.3 I/O File Specification 57

4.8 Error Analysis 58

4.8.1 Introduction 58

CONTENTS iii

4.8.2 Command Line Options 59

4.8.3 I/O File Specification 63

4.9 Instrumentation Module 65

4.9.1 Introduction 65

4.9.2 Command Line Options 67

4.9.3 I/O File Specification 69

5 World-view Image Database 71

5.1 Introduction 71

5.2 Trajectory Data 71

5.3 Scenario 74

5.4 Image Generation 75

5.5 I/O File Specification 76

5.5.1 Command Line Options 76

5.5.2 Input Data File 80

5.5.3 Output Description File 81

5.5.4 Image Files 83

6 Conclusions 84

6.1 Summary of Achievements 84

6.2 Future Research 85

A a-/?-7 Tracker Design 87

A.l Introduction 87

A.2 Target State Estimator Equation 88

A.2.1 State Equation 88

A.2.2 Measurement Equation 89

A.2.3 Discretization 89

A.3 Target State Estimator Gains 90

A.4 Predictor Equation 92

CONTENTS iv

A.5 Numerical Results 92

A.6 Conclusions 95

B Dartboard Analysis 96

B.l Definitions 96

B.2 The Hit Point 98

B.3 Coordinate Transformation 99

C Geometrical Transformation 101

C.l Introduction 101

C.2 Viewing Transformation 102

C.2.1 World to Screen Transformations 102

C.2.2 Scaling Compensation 104

C.2.3 Perspective Transformation 104

C.2.4 Screen Transformation 105

C.2.5 Concatenation of Transformations 107

C.3 Screen to World Transformations 108

D Manual Pages 110

Bibliography 122

List of Figures

1.1 Structure of HiTert system 2

1.2 Tracking scenario 4

1.3 Trajectory data 6

1.4 A generic subsystem 7

1.5 World and camera views 8

4.1 Software modules and data flows 22

4.2 Definitions of the dartboard 59

4.3 Definition of the burst interval 60

4.4 The window arrangement 66

5.1 Scenario under consideration 73

5.2 Trajectory data 74

A.l a-ß-j tracker RMS prediction error 93

A.2 OL-ß tracker RMS prediction error 94

A.3 a-ß tracker RMS estimation error(*p = 0 second) 95

B.l Dartboard schematic 97

C.l World to eye coordinate transformation 102

C.2 Perspective transformation 106

C.3 Screen transformation 107

Chapter 1

Introduction

In this chapter, the underlying concepts of the Hierarchical Target Extrac-

tion, Recognition and Tracking(HiTert) System will be addressed. These

concepts are essential for understanding the rest of the material. Some im-

plementation issues will also be briefly discussed.

1.1 Structure of the HiTert System

The HiTert system is aimed to study a hierarchical target extraction, recogni-

tion and tracking system based on passive sensors, which could be integrated

with other battlefield resources[l]. The HiTert system consists of the mu-

tually beneficial subsystems running different algorithms and executing in

parallel at several hierarchical levels. Together these subsystems cooperate

in seeking the solution for the complex problem beyond the capability of any

one of the subsystems. The HiTert system is composed of four hierarchical

levels as shown in Figure 1.1:

• Preprocessing Level: Imagery acquiring, noise filtering and compensa-

tion of the effect of the imaging system[3].

CHAPTER 1. INTRODUCTION

High L«vel Reasoning

I
Target

Recognition

I
V~l

Orientation
Tracker

Target
Extraction

I
I

Predictor II

Centrold

Tracker
Preditctor I

~^3E87

user cn — inde

other syateaw

Image
Preprocessing

CT sS,
Camera

Servo *=d. ö

-I Radar L

Figure 1.1: Structure of HiTert system

CHAPTER 1. INTRODUCTION 3

• Low Level: Target extraction and tracking. The tracker at this level

mainly uses primitive information such as the target centroid position,

while the image processor at this level classifies the pixels of images

and separates the target from the background.

• Middle Level: Target recognition and tracking. The image processor at

this level is responsible for yielding target orientation information and

object identification. These refined results are utilized by the tracker

at this level. The processing at this level has a longer time period than

that at the low level processing.

• High Level: Command, Control and Communication. This high-level

reasoning module is responsible for the coordination of low-level subsys-

tems, information fusion, user interaction, and interaction with other

battle field resources. The blackboard architecture allows the informa-

tion sharing, subsystem coordination and integration with other battle

field resources.

1.2 Scenario Under Consideration

Figure 1.2 shows the simple battle field scene being considered. It consists of

a flat terrain, a moving tracked vehicle, a house, a generic tree. Such a simple

scene still possesses the characteristics of a complicated battle field environ-

ment. For instance, certain obstacle avoidance strategies will be adopted

by the driver in the decision-making of the driving logic; overlapping of the

target and ground obstacles may pose ambiguity problems for the image pro-

cessor to resolve. However, such a simple scenario ameliorates the complexity

of scene rendering and also makes it more amenable to study and analysis.

It should be noted that to be consistent with the Dore 3D graphics

system[ll], which is used to generate the world view images, the camera

coordinate system is such that the "camera" looks along the negative Zc

CHAPTER!. INTRODUCTION

t y.

*->■■'

y,#-0

Figure 1.2: Tracking scenario

*

CHAPTER!. INTRODUCTION 5

direction and xc, yc are mapped to the horizontal dirction(left to right) and

vertical direction (down to up) of the screen.

One set of trajectory data is shown in Figure 1.3. It is believed that

the target may do any maneuvering as the driver deems necessary to avoid

the threat in a real environment. A maneuvering is realizable as long as the

certain dynamic constraints are satisfied:

• The acceleration and deceleration can not exceed the thrust capability

as determined mainly by the characteristics of the propulsion system

and the terrain sustaining capability.

• Under the no-skidding condition, the target lateral acceleration should

not exceed the terrain sustaining capability determined by the lateral

frictional coefficient:

an = u>v < iitg

where an is the centripetal acceleration, u? the angular rate, v the for-

ward speed, fit the lateral frictional coefficient, g the gravitational con-

stant.

1.3 Some Implementation Issues

1.3.1 A Generic Subsystem

The HiTert system spans several research fields such as target dynamics

modeling and tracking, image processing, artificial intelligence and database.

Many subproblems are being actively studied. The full implementation of

such a hierarchical system is difficult. And further in-depth study of HiTert

is needed. As a result, we break down the complex problem into simple

ones, concentrating on building a testbed for the subsystem operating at

CHAPTER]. INTRODUCTION

r Profile AfliuUr Vetoaty Profile

Heading Angle Profile gQOQ Trajectory in the jagrtiaj Fume

6000

-4000 -2000 0 2000
Y(fcet)

4000

Figure 1.3: Trajectory data

different levels. From the point of view of information flow, a subsystem

at a certain level has the information loop as shown in Figure 1.4. Such a

testbed is simple enough to implement, yet still flexible enough for further

development. With such a testbed, different modules or algorithms can be

plugged in with minimum efforts. This allows the easy comparisons and

selections of different algorithms, and it also makes it possible to quickly

prototype a subsystem.

CHAPTER 1. INTRODUCTION

—4 camera -4 IP 1—4 «»ckcr —J predictor

Figure 1.4: A generic subsystem

1.3.2 Non-real Time Simulation

Optical imaging system is one of the important components of the HiTert

system. Computer graphics principles are utilized to generate the images for

a simulated battle field scene. Real-time simulation of a battle field scene

is tempting, but requires special hardware, which is prohibitively expensive.

Also, segmenting images is very CPU-intensive and special hardware is also

required if the real-time response is desired. Because of the unavailability of

the special hardware due to its prohibitively high cost, it is decided to perform

CPU-intensive work off-line, i.e. a sequence of images are ^regenerated and

presegmented and the results are stored on disk. The raw images as well

as segmented images are made available, on demand, to the HiTert system

during its operation.

The basic idea behind this approach is as follows. A fixed world-view

"camera" is introduced for the purpose of generating a temporal sequence

of world images. This "camera" is assumed to have sufficiently large field

of view such that the target always moves within the field of view for the

time period of interest. The tracking camera, which is the imagery acquiring

system in HiTert, is able to pane commanded by the tracking system. If

both the world-view camera and the tracking camera are located at the same

position, if the world-view camera has a sufficiently large field of view, and

if the tracking camera has sufficiently small panning angles, then the image

CHAPTER J. INTRODUCTION

Figure 1.5: World and camera views

as seen by the tracking camera is just a subimage of the world-view image.

This is illustrated in Figure 1.5.]

The presegmentation is done on a subimage that is centered around the

target. Portion of this subimage may overlap with the image of the tracking

camera. It should be noted that if HiTert has a poor performance in oper-

ation, the tracking camera may be commanded to look at a wrong region.

In this case, the presegmented image and the tracking camera image may

have no overlapping at all. If HiTert's performance is very poor, the track-

ing camera's boresight may completely fall outside of the viewing angles of

the world-view camera. Conversely, the symbiotic resonance of the track-

ing system and image processing system can yield a tight lock on target[2].

Therefore, with this non-real time simulation approach, in which the CPU-

intensive jobs are preprocessed , HiTert system can be implemented on a

general-purpose digital computer; and reasonably fast on-line responses can

be achieved; yet the dynamic performance of the HiTert system can still be

fully evaluated.

The presegmentation allows the implementation of sophisticated time-

consuming image processing algorithms. This non-real time simulation ap-

CHAPTER 1. INTRODUCTION 9

proach also makes it possible to study tracking and image processing algo-

rithms separately.

It should be pointed out that the world-view "camera" is fictitious. Its

main purpose is to generate the world-view image database.

1.4 Development Environment

1.4.1 Hardware Architecture

The School of Aeronautics and Astronautics has clusters of Sun worksta-

tions ranging from Sun 3/50 to Sparc 1, running vendor-enhanced UNIX1

operating system(SunOS 4.x). These workstations are part of the nodes on

the Local Area Network, which is connected to the Engineering Computing

Network(ECN). ECN consists of varieties of platforms, ranging from work-

stations to supermini computers, connected via ethernet.

The primary development work is done on a Sun workstation, with the

de facto industry standard X Window System2 Version 11, Release 4. The

network environment as well as the network-transparency of X windowing

system allows us to explore the distributed processing in the HiTert system.

Also whenever possible, more dedicated computers are used. For example,

the image database is generated on a Stardent 3000 machine, a supermini

graphics computer.

1.4.2 Interprocess Communication(IPC)

On current UNIX systems, processes can communicate with one another via a

variety of methods, including shared file pointers, signals, files, pipes, FIFO's,

semaphores, messages, shared memory and Berkeley sockets[6, 7]. Shared

memory provides the fastest IPC mechanism. However, the communicating

^NIX is a registered trademark of AT&T Bell Laboratories.
2The X Window System is a trademark of MIT.

CHAPTER 1. INTRODUCTION 10

processes must physically reside on the same machine. Also, shared mem-

ory makes the communication interface complicated, while software modules

are constantly evolving. BSD socket-based IPC mechanism has the same

drawback in communication interface design as shared memory, although it

allows communication among the processes running on different machines

on the Internet. To simplify the communication interface, files are chosen

as the IPC mechanism for the HiTert system at this stage. Files provides

IPC for the processes running on the machines with the same Network File

System. Also, there are standard C libraries on all systems supporting the

C language[4, 5], and most people are familiar with I/O on files. Another

important factor in choosing files as the IPC mechanism is the availability

of the Xll-based Cantata visual programming language coming with the

Khoros system(8]. Cantata provides a graphical user interface for the UNIX

processes communicating via files, thus simplifying our work in the graphical

user interface design.

1.4.3 Cantata Visual Programming Language

One of the major components of the Khoros system is its Cantata visual

programming language. Cantata provides a graphical user interface for the

conventional command line options interface of UNIX programs. Graphi-

cally expressed and visually oriented, Cantata consists of following graphical

elements: a workspace, forms, glyphs, and connections. To build a Can-

tata application, the user selects the desired programs(or processing nodes),

places the corresponding glyphs on the workspace, and then interconnects

the glyphs from upstream to downstream to indicate the data flow of pro-

cessing. The built-in control constructs, as well as its expression parser and

dynamic execution scheduler make Cantata behaves like a visual shell. Be-

cause of these features, Cantata is selected as a visual presentation tool for

our UNIX command line interface programs.

Chapter 2

Installation Guide

In this chapter, some highlights of the installation procedures will be pre-

sented to reduce the installation efforts on the user's part. Currently, all the

modules are implemented in the C Language, though some Fortran and Lisp

modules may be included in the future. Efficiency and portability have been

taken into account. AH the programs have been tested on Sun3 and Sparc

workstations.

2.1 Platform Requirements

A Sun workstation of 3/60 or later model is recommended but not mandatory.

Other hardware supporting C and UNIX environment is just fine, although

some additional porting efforts may be needed. However, in order for all the

modules to run, the X window system(version 11, release 4) and the Khoros

system must already be installed. We shall assume this to be true in the

following.

The HiTert system takes about 10 mega bytes of disk space and need 8

MB main memory (RAM) to achieve a reasonable real-time response because

of the large(900 x 900 pixels) images involved.

11

CHAPTER 2. INSTALLATION GUIDE 12

2.2 Unpack the Source

To unpack the tar file hitert. tar. Z, go to the directory in which the HiTert

source tree is to be installed. Note that this directory does not have to be in

the Khoros source tree. Then type

example^ zcat hitert.tar.Z I tar xvf -

This should result in HiTert source directory hitert.

2.3 Installation Environment Variables

The environment variable HITERT_HOME must be set to the full path of the

HiTert source directory. For example, if you are using csh-shell, type

csh-exampleX setenv HITERT.HOME /home/gus2/luj/hitert

If you're using ksh, bash, or sh shell, type

sh-exampleX HITERT_H0ME«/home/gus2/luj/hitert

sh-example% export HITERT_HOME

Note in the the above examples, /home/gus2/luj/hitert should be modified

to reflect the change of the full path name of the HiTert source directory.

From now on we shall refer to this directory, following a UNIX shell's syntax,

by symbol $HITERT_HOME.

To compile all the programs, you should also have the environment vari-

able KHOROS _H0ME set properly to the directory where the Khoros system is

installed. This is necessary for linking with the Khoros libraries in compiling

some programs. Section 3.2 has some information on how to set KH0R0S_H0ME.

For further information on how to set this environment variable, please con-

sult Khoros reference manual.

CHAPTER 2. INSTALLATION GUIDE 13

2.4 Compilation and Installation

After you have unpacked the HiTert source and set the environment variables,

issue the following command while in $HITERT_HOME directory:

exampleX ./InstallMe

InstallMe is a shell script intended to automate the installation process.

In the case such a global automated compiling procedure fails, you may want

to compile the programs individually. To compile a program, you may need

to modify the corresponding Imakefile1, and then update Makefile by issuing

commands:

exampleX rm -f Makefile

exampleX makemake # Khoros program. Not xmkmf

exampleX make all

After the successful compilation of the programs, you need to copy or

move the resulting executable programs to a directory. This directory should

be included in your shell's search path by modifying the environment vari-

able PATH as necessary. You may also want to install manual pages to the

appropriate directory and modify the mam(l)'s environment variable MANPATH

so that HiTert's UNIX manual page directory is in man(l)'s search path.

lThe Imakefile is Khoros-flavored and has the difference with the Imakefile of X11R4
from MIT.

Chapter 3

Getting Started

3.1 The X Window System

It is assumed that you have some basic working experience in a windowing

environment, and that you know how to login a workstation with a bitmap

display and start the X window system. This procedure varies from the site

to site. Usually, there is a site-customized shell script program available to

help the user to invoke xinit(1) and a set of applications such as xterm(l),

xclock(l) and etc.

3.2 The Khoros System

It is also assumed that now both Khoros and HiTert system have been suc-

cessfully installed and you have some exposure to cantata(l), a visual lan-

guage environment in Khoros system. If you know how to start Khoros

programs from your home directory, you may skip this section and go to

Section 3.3.

To access Khoros programs, you need to set the environment variable

KHOROS JIOME to the full path of the directory in which Khoros is installed(this

directory will be referred to by the symbol $KH0R0S_H0ME). In SKHOROS.HOME,

14

CHAPTERS. GETTING STARTED 15

there should be a file named .khoros-env for csh users. You may need to

add the following lines in your .login or .cshrc file:

setenv KH0R0S.H0ME /home/gus3/khaos

source $KH0R0S.H0ME/.khoros.env

set path - ($KH0R0S.H0ME/bin $path)

If you are using other shells such as ksh, bash or sh, you need to

modify $KHQR0S_H0ME/,khoros_env. In your home directory, create a file

. khoros.env. sh which contains the following lines

KH0R0S_H0ME«/home/gus3/khaos # edit this as necessary
KHOROS.MAIL-$USER

KHOROS.LOG-$HOME/khoros.cmd.log

KHOROS_VERBOSE»no

KH0R0S_CACHE_SIZE«4194304

KHOROS.CACHE-no

TMPDIR«${TMPDIR-/tmp}

export KH0R0S.H0ME KHOROS.MAIL KH0R0S.LOG KHOROS.VERBOSE \

KHOROS.CACHE.SIZE KHOROS.CACHE TMPDIR

Then in your .profile, add the following statements:

. $HOME/.khoros_env.sh

PATH»$KHOROS.HOME/bin:$PATH; export PATH

3.3 Environment Variables for the HiTert
System

First, you need to set the shell environment variable HITERTJ10ME to the

directory in which the hitert source tree resides. For example, if you are

using csh, just type the following to the shell prompt:

CHAPTER 3. GETTING STARTED 16

example* setenv HITERT.HOME /hoae/gus2/luj/aro/hitert

If you are a ksh, bash, sh user, enter the following at the shell prompt:

example* HITERT_H0ME«/home/gus2/luj/aro/hitert

example* export HITERT.HOME

In the above examples, /home/gus2/luj /aro/hitert need to be modi-

fied reflect the changes to the actual environment. If you want to avoid doing

this every time after you login, you may add the corresponding statements

to your .login or .cshrc file if you are a csh user, or to your .profile file

if you are a ksh, bash or sh user.

You also need to check to see if the shell environment variable PATH

includes the directory in which the HiTert programs are installed. If not, you

need to modify PATH such that the shell's search path includes this directory.

For example, if the HiTert programs are installed in the directory $HOME/bin,

you may modify your shell PATH variable in the following way:

for csh user

setenv PATH $HOME/bin:$PATH

or

for ksh, bash, sh user

PATH»$HOME/bin:$PATH; export PATH

You may also want to set your environment variable MANPATH so that

it includes the directory in which the manual pages for the HiTert system

are installed. For example, if the manual pages for the HiTert system are

installed in the directory $HOME/man/manl, you may set MANPATH variable

this way:

for csh user

setenv MANPATH /usr/man:$HOME/man

CHAPTER 3, GETTING STARTED 17

or

for ksh, bash» sh user

MANPATH-/usr/man:$HOME/«an; export MANPATH

To see if you have correctly set the environment variables for the HiTert

system, just type

exampleX hitert -help

If you are able to see the help message from hitert, congratulations. If your

shell is unable to find the executable program hitert, you need to check if

PATH indeed includes the directory in which the HiTert executable programs

reside. If hitert reports an error, you need to make changes accordingly.

Similarly, if MANPATH has been set correctly, you should be able to see

the on-line manual pages following this example:

exampleX nan hitert

3.4 Command Line Interface

The HiTert programs can be invoked as an individual program by typing

the command or program name with command line options. For exam-

ple, if the file prediction.dat contains prediction data from the a-ß-f

tracker/predictor, and if the file exact. dat contains the reference exact data

for the target positions, you can invoke errAnaly to the perform error anal-

ysis by typing:

exampleX errAnaly -pred prediction.dat -exact exact.dat \

-showDart 0 -outSpec spec -outErr error.dat

CHAPTER 3. GETTING STARTED 18

errAnaly will compute the errors in each inertia! x, y, z component,

and store the error data in the file error.dat. File spec will contain the

statistics about the errors.

This is the conventional way to invoke a UNIX program, familiar to

most UNIX users. In this approach, a shell is acting as the interface be-

tween the user and the kernel, even though you may not be aware of this.

Except for xhitert, all ether HiTert programs can be executed by using the

command line interface from any terminal without getting into X windowing

environment.

If you want to get some simple help from a program, just type

exampleX errAnaly -help

This yields

Usage: errAnaly

-pred <predfile>

-exact <exactfile>

[-tbf <tbf>]

[-tburst <tburs>]

[-showDart <1 or 0>]

-outSpec <filename>

[-outErr <filename>]

[-help]

— data file fron the predictor

— exact data file for comparison.

— track-before-fire time.

— burst interval.

— computes the dartboard errors.

-- output spec filename.

— prediction err data filename.

— print out this help message.

If your manual pages are properly installed and the environment variable

MANPATH is set properly, you may get a more detailed description by using

UNIX man(l) command. For example,

example^ man errAnaly

CHAPTER 3. GETTING STARTED 19
■ ...-■

UNIX stdin(standard input) can be used for any one input file by spec-

ifying *-* for the file name. Similarly, atdout(standard output) can be used

for any one output file by specifying " for the file name. As a result, the

output of one program can be piped to the input of another program. For

example,

exampleX predict -i tracker.dat -o - -tp 2 I errAnaly -pred - \

-exact exact.dat -showDart 0 -outSpec spec -outErr error.dat

invokes the predict, which performs prediction based on the tracker out-

put(state estimates) tracker.dat. The prediction results are piped, as the

input, to the program errAnaly, which does the error analysis.

Experienced users may notice that there are some differences in the han-

dling of command line options between the HiTert programs and Khoros pro-

grams. In the HiTert programs, the Khoros program ghostwriter has not

been used to generate the code for handling command line options; instead

a much more efficient scheme is utilized to parse the command line options.

Standard Khoros flags U[-U] [-P] [-A [file]] [-a [file]]" are not supported by the

HiTert programs, since we ourselves found little use of them.

3.5 Cantata Visual Language Interface

To access cantata visual language interface for the HiTert system, you need

first start up the X window system from your workstation. Then from an

xterm(i)(an X-based terminal emulator) type

exampleX hitert

This should bring up the cantata visual language interface with the cus-

tomized forms for the HiTert system. All the HiTert programs can be ac-

cessed from the pull-down menu "HiTERT" on the master form. On-line

CHAPTER 3. GETTING STARTED 20

documentation for the corresponding programs can be invoked by pressing

the "Help" button on the pane.

Within the the cantata visual language environment, accessing the HiTert

programs is the same as accessing other Khoros programs. You should have

little problem in using HiTert programs if you are familiar with cantata.

Please consult Khoros tutorial or reference manual for the assistance in us-

ing cantata.

Novice users may find it helpful to use hitert2. This program brings up

the cantata visual language interface as well as a preassembled and stored

workspace as shown in Figure 4.1. This should serve as a good example

<*s how to assemble individual HiTert programs together to perform a team

work. It should also serve as an extensible foundation upon which a user can

configure HiTert's behavior by modifying parameters.

Chapter 4

User's Guide

The modules in HiTert System will be explained in the following sections.

Chapter 5 is dedicated to the discussion on the generation of the image

database. Interested reader may read that chapter before this one.

4.1 Overview of the Software Modules

Figure 4.1 shows the primary modules comprising a generic subsystem in

HiTert: dataControl, w.camera, Lcamera, ipc, tracker, predictor, errAnaly

and xhitert. dataControl module controls starting and terminating time, and

etc. for the HiTert system, w.camera is the world-view camera, responsible

for retrieving the world-view images. Lcamera simulates the servomecha-

nism for the tracking camera, receiving command signals from the tracker

and pointing the tracking camera to the appropriate direction, ipc is the

centroid image processor, responsible for retrieving presegmented images.

tracker does the state estimation, predictor does the prediction based on the

state estimation results from the tracker. errAnaly performs the error anal-

ysis for the overall tracking system, xhitert is the instrumentation module,

responsible for the displaying the world-view image, tracking camera image,

segmented image, prediction results, error analysis results, and etc.

21

CHAPTER 4. USER'S GUIDE 22

o
oa

|

1

!

o
CO

S
P

CHAPTER 4. USER'S GUIDE 23

There are two functional modes for the HiTert system: the batch mode

and loop mode. In the batch mode, each module operates on all the data for

the whole time history of the interest and outputs all relevant data, and then

it stops execution1. Whereas in the loop mode, each module operates on the

data one time step at a time and will resume the execution when next data

frame is available.

Right now the HiTert system only functions in the batch mode. This

is done primarily because files have been chosen as the IPC mechanism to

fit into the cantata visual environment. Using intermediate files as the IPC

mechanism is most suitable for the processes communicating and executing

in serial or in batch mode. It is possible to implement the loop mode on

top of cant at a. However, additional mechanisms such as file locking tech-

niques must be introduced to synchronize and safeguard the communication

of processes executing in loop. Also ia the loop mode, each time interme-

diate temporary communication files need to be recreated and each module

need to be restarted by cantata through fork(2). This would incur much

overhead2. Another hindrance for implementing the loop mode is that more

powerful computer hardware3 is needed for displaying images in succession.

It should be pointed out that in order to avoid creating or passing multi-

ple intermediate data files, spec files are used frequently in the HiTert system.

The spec files are introduced as the information carriers. Such a spec file

differs from the ordinary data file in that the main purpose of the spec file is

to bundle all the necessar* pointers to other data files together in a single file,

while all other data files retain their own formats and integrity. For example,
lIn batch mode, w.c&mtra only retrieves one frame from the image database, and

xl&itsrt only display one frame of image to save the time and computer resources. This
is important particularly for the monochrome display for which xhitsrt has to do CPU-
intensive dithering to the the color image.

3More appropriate IPC mechanism for the hop mode is to use BSD sockets, which
however is not supported by cantata visual language environment.

3For example, a Sparc-station with 16 MB RAM and 8-bit color display is required.

CHAPTERS USER'S GUIDE 24

w-camera creates a world view image spec file. This file contains the sequence

number of the original input image and the path of the world-view image. By

accessing this spec file, other processes can not only access the image data

by opening the file with the specified path but also know the corresponding

time by appropriately interpreting the sequence number in the spec file.

When multiple data files need to be accessed by the communicating

processes, using the spec file is particularly convenient, since the spec file

encapsulates all the information together as a single file. Introducing spec

files not only greatly simplifies and cleans up the communication interface

design, but also have the potential to greatly reduce the communication

overhead, since now multiple processes can access the same data files without

having to actually pass large data files around.

4.2 Data Control Module

4.2.1 Introduction

In the batch mode, each HiTert program operates on all the data contained

in the input file(s). Very often, however, one wants the HiTert system to run

over a contiguous portion of the data in the file. In order to avoid the unnec-

essary complexity of other HiTert programs, dataControl is introduced as a

stand-alone data control module to isolate the problem. dataControl is re-

sponsible for selecting a portion of time history over which the HiTert system

operates. It takes the description file for the world-view and segmented im-

age database as input, and outputs the selected segment description files and

the corresponding exact trajectory data file. It also outputs a spec file which

contains the sequence numbers and the data records from the description

files at the starting and terminating time. This way, each HiTert program

still operates on all the data contained in the input file(s), yet the HiTert

system is able to operate only over the specified time period as controlled by

CHAPTER 4. USER'S GUIDE 25

dataControl.

4.2.2 Command Line Options

Synopsis

dataControl -iaglnfo imglnfoFile -seglnfo seglnfoFile -tO start-time -te

end-time -oimglnfo out-imglnfoFile -oseglnfo out-seglnJoFile -traj out-

exact-traj -spec out-spec [-help]

Options

-imglnfo imglnfoFile Required argument. imglnfoFile is the description

file for the world-view image database of the whole time history. This

file consists of the data records, with each data record containing items

(see Section 5.5.3):

• time at which the image is to be generated. This is identified by

a " key<word=value" pair, with the keyword being time.

the image identifier which maps to the corresponding image file.

This is identified by a " ktyword=valuev> pair, with the keyword

being image.

the image width in number of pixels. This is identified by a tt

keyword=value" pair, with the keyword being width.

the image height in number of pixels. This is identified by a a

keyword=value" pair, with the keyword being height.

• the tank's state at that instant which includes

t xi yi zi xi yi £[R S T R S t

• the camera's state which includes

Xcl Vcl Zcl X'cl Vcl Zcl Re Sc Tc Rc Sc Tc

•

•

•

CHAPTER 4. USER'S GUIDE 26

fov fov hither yon yon

where xc/, yc/, zc/, xc/, y'ci, zci denote the position and velocity

components of the camera at the instant in global inertial co-

ordinate system. Ac, Sc, Tc, Ac» So Tc refer to the yaw, pitch

, roll angles and their rates, fov and fov refer to the field of

view(in degrees) and its time rate of change(in degrees per sec-

ond), respectively; hither, hither denote the position of the front

clipping plane and its rate in the camera coordinate system; yon,

yon position of the back clipping plane and its rate in the camera

coordinate system. The camera coordinate system is such that its

initial orientation aligns with the inertial coordinate system, and

the camera is always looking towards the negative z direction of

the body-fixed right-handed coordinate system.

• range of the target to camera and range rate.

-seglnf o seglnfoFile Required argument. seglnfoFile is the description file

for the segmented image database of the whole time history. The file

is composed of the data records of the following form:

time«2 image«sl.seg0020

seg_ulx»90 seg_uly«316 seg_vidth«256 seg_height*256

tcx-221.809 tcy«444.128 tvx-46.5792 tvy»5.43854

out.ulx«-l out_uly*-l out_width*256 out.height«256

aize«46.8957 scale*2 mag»5.45893 proj»2

roll«0 pitch«0 yaw»i.5609

eatroll»0 estpitch»0 estyaw»1.5708

-tO start-time Required argument, start-time specifies the time at which

the tracking system should start to run. This floating number has the

CHAPTER 4. USER'S GUIDE 27

unit of seconds.

Example: -tO 10

-te end-time Required argument, end-time specifies the time at which the

tracking system should terminate. This floating number has the unit

of seconds. By specifying start-time and end-time, one can ask system

to run over the selected segment of the trajectory of interest instead of

the whole time history.

Example: -te 50

-oimglnf o out-img Info File Required argument. out-imglnfoFile is the se-

lected segment of the description file for the world-view image database.

It has the same format as the input file imglnfoFUe.

-oseglnf o out-seglnfoFile Required argument. out-seglnfoFile is the se-

lected segment of the description file for the segmented image database.

It has the same format as the input file seglnfoFile.

-traj out-exact-traj Required argument, out-ezact-traj is the file contain-

ing the selected segment of exact trajectory. This file has the following

format:
* x(t) 5,(0 z(t)

where t is the current time, x(t), y(t) and z(t) the exact target position

coordinates at r. These floating numbers r, x(£), y(t) and z(t) have the

following units, respectively:

seconds meters meters meters

-spec oui-spec Required argument, out-spec is the output spec file contain-

ing information corresponding to the starting and terminating points.

CHAPTERS USER'S GUIDE 28

Each of the two data records in the file out-spec consists of the fol-

lowing items in order: A sequence number, a data record from the

image description file at stari-time(ox end-time), a data record from

the description file for the segmented image database at start-time(or

end-time).

-help Optional argument. When this argument is specified, dataControl

prints out a brief help message and exits gracefully.

4.2.3 I/O File Specification

-imglnfo imglnfoFile

The input image the description file imglnfoFile consists of the data records,

with each data record containing items (see Section 5.5.3):

• time at which the image is to be generated. This is identified by a u

keyword=value'° pair, with the keyword being time.

• the image identifier which maps to the corresponding image file. This is

identified by a u keyword=value" pair, with the keyword being image.

• the image width in number of pixels. This is identified by a tt key-

word=value" pair, with the keyword being width.

• the image height in number of pixels. This is identified by a u key-

word=value™ pair, with the keyword being height.

• the tank's state at that instant which includes

t if yi zi xi yi z'i R S T R S T

• the camera's state which includes

CHAPTER 4. USER'S GUIDE 29

%ci yd Zci x'ci y'd z'ci Rc Sc Tc Rc Sc Tc

fov fov hither yon yon

where xci, ycjy zci, xci, y'c[, z'cj denote the position and velocity compo-

nents of the camera at the instant in global inertial coordinate system.

RC1 Sc, Tc, Rcy 5C, Tc refer to the yaw, pitch , roll angles and their rates.

fov and fov refer to the field of view(in degrees) and its time rate of

change(in degrees per second), respectively; hither, hither denote the

position of the front clipping plane and its rate in the camera coordi-

nate system; yon, yon position of the back clipping plane and its rate in

the camera coordinate system. The camera coordinate system is such

that its initial orientation aligns with the inertial coordinate system,

and the camera is always looking towards the negative z direction of

the body-fixed right-handed coordinate system.

• range of the target to camera and range rate.

The data records are separated by one or more white space charac-

ters(blanks, tabs, newlines). The data items in each data record are also

separated by one or more white space characters.

A Typical abridged imglnfoFile having two data records may look as

follows:

time=2.000000 image=sl.img0020 width=900 height=900

2000.100000 -79,946000 -1.400000 0.109320 11.046000 0.000000

1.560900 0.000000 0.000000 0.005000 0.000000 0,000000

0.000000 0.000000 -5.000000 0.000000 0.000000 0.000000

0.000000 -0.002778 0.000000 0.000000 0.000000 0.000000

9.000000 0.000000 -1.000000 0.000000 -2500.000000 0.000000

2001.703368 -0,331933

CHAPTER 4. USER'S GUIDE 30

time-2.100000 image'sl.img0021 vidth-900 height-900

2000.200000 -78.837000 -1.400000 0.109860 11.141000 0.000000

1.560900 0.000000 0.000000 0.035000 0.000000 0.000000

0.000000 0.000000 -5.000000 0.000000 0.000000 0.000000

0.000000 -0.002778 0.000000 0.000000 0.000000 0.000000

9.000000 0.000000 -1.000000 0.000000 -2500.000000 0.000000

2001.759304 -0.329001

-seglnfo seglnfoFUe l

The input file seglnfoFUe contains a brief description of the parameters ac-

tive at the time each image is segmented. Each segmented image has an

associated record of the form:

t ime*0.5 image's1.seg0005

seg_ulx»40 seg_uly*40 seg_width*256 seg_height»256

tcx-130.0 tcy«130.0 tvx«60.0 tvy-80.0

out_ulx«4 out.uly-4 out^width«256 out.height-256

size«100 scale»2.0 mag*2.56 proj«5

roll»0 pitch»0 yaw»1.5609

estroll'O estpitch'O estyawl .5708

The information in this file pertains strictly to the segmented image. Infor-

mation regarding the pre-segmentation image, for example its dimensions, is

not recorded in this file; instead it is in "sl.info".

Each segmented image has a sequence number formed from the last 4

characters of its name; time is this sequence number divided by 10.

The entire input image is not segmented; only pixels falling in a segmen-

tation window, measuring seg.height by seg.width, centered at the last

estimated position of the target are considered. The upper left hand corner

1 By Craig Codrington

CHAPTER 4. USER'S GUIDE 31

of this window is situated at pixel coordinates (seg_ulx,seg_uly) of the in-

put image. The new target position, relative to the input image, is taken to

be the centroid (tcx,tcy) of the pixels classified as target, and an indication

of its size is given by the variances tvx and tvy of these pixels in the x and

y directions, respectively. In fact,

size s yjtvx2 + tvy2 (4.1)

The segmentation is mapped to an output window, measuring out-height

by out,width, and centered at the new position of the target in the seg-

mentation window. The upper left hand corner of this window is situated

at pixel coordinates (out_ulx,out_uly) of the input image. The contents of

the output window are what is written to the segmented image file image

This is not the whole story, however, for there are 5 possible ways to map

the segmentation window to the output window. The particular mapping

chosen is given by proj. Some of these mappings (one to many, many to

one, and fuzzy many to one) attempt to scale the target to a consistent size

in the output window. For these mappings, the scale gives the fraction of

the output window that corresponds to one size unit in the segmentation

window. For such mappings, the output window is virtual - it does not

correspond to any particular location in the input image, so out.ulx and

out.uly are both set to -1. For scaled mappings, the magnification mag is

defined as
/out_height+out-width\ ^ gcaJe

 ~ : " (4.2) 2 * size v J

For other mappings, mag is set to 1. A brief description of each mapping is

given below.

one to one (proj = 1) : The dimensions of the segmentation and output

windows are ignored; the entire input image is segmented and the com-

plete segmentation is written to image.

CHAPTERS USER'S GUIDE 32

one to many (proj = 2) : For each pixel 0 in the output window, find

the pixel S in the segmentation window which is mapped to it, taking

account of scale and size, and set the class of 0 to the class of S.

many to one (proj = 3) : Initialize all pixels in the output window to non-

target. For each target pixel S in the segmentation window, find the

pixel 0 it is mapped to in the output window, taking account of scale

and size, and set 0 to target.

fuzzy many to one (proj = 4) : This mapping is like the previous one

except that all segmentation window pixels are mapped to the output

window; the class of an output window pixel is then the class of the

segmentation window pixel mapped to it. If more than one segmenta-

tion window pixel is mapped to a single output window pixel 0, the

class to which the largest number of such segmentation window pixels

belong becomes the class of 0.

orthogonal (proj = 5) : For each pixel 0 in the output window, find the

pixel S in the segmentation window which is mapped to it, without

scaling, and set the class of 0 to the class of S.

The fields roll, pitch, and yaw give the target's true orientation, as

indicated in "sl.info", while estroll, estpitch, and estyaw give it's esti-

mated orientation, derived from it's computed moments by indexing into

"momentfile" using a nearest neighbor strategy.

-oimglnfo ouUimglnfoFile

out-img Info File has the same data format as seg Info File.

-oseglnfo out-seg Info File

out-seg Info File has the same data format as seg Info File.

CHAPTER 4. USER'S GUIDE 33

-traj out-txacUtraj

The data records making up out-exact-traj are separated by one or more

mixed white space characters. Within each data record, there are three float-

ing numbers t, x(t), y(t) and z(t) which are also separated by one or more

mixed white space characters, t is the current time and has the unit of sec-

onds; x(f), y(t) and z(t) the exact target position coordinates at t, and each

have the unit of meters.

A typical exactfile having 5 data records may look as follows:

2.000000 2000.100000 -79.946000 -1.400000

2.100000 2000.200000 -78.837000 -1.400000

2.200000 2000.200000 -77.718000 -1.400000

2.300000 2000.200000 -76.590000 -1.400000

2.400000 2000.200000 -75.453000 -1.400000

out-exact-traj is an output file from dataControl and has the same for-

mat as the input file exact-traj.

-spec out-spec

out-spec is the output spec file containing information corresponding to the

starting and terminating points. Each of the two data records in the file

out-spec consists of the following items in order: A sequence number, a data

record from the image description file at start-time (or end-time), a data

record from the description file for the segmented image database at start-

time(or end-time). All data fields are separated by one or more mixed white

space characters. A typical output spec file out-spec may look as follows:

0

time«0.000000 image=sl.imgOOOO vidth»900 height*900

2000.000000 -100.000000 -1.400000 0.000000 8.938900 0.000000

CHAPTER 4. USER'S GUIDE 34

1.570800 0.000000 0.000000 -0.645000 0.000000 0.000000

0.000000 0.000000 -5.000000 0.000000 0.000000 0.000000

0.000000 -0.002778 0.000000 0.000000 0.000000 0.000000

9.000000 0.000000 -1.000000 0.000000 -2500.000000 0.000000

2002.504682 -0.446386

time» 0.000000 image* sl.segOOOO

seg.ulx* 0 seg.uly* 0 seg.width* 256 seg.height* 256

tcx- 164.716000 tcy* 444.135000 tvx* 45.836500 tvy- 5.356840

out.ulx* -1 out.uly* -1 out.width* 256 out.height* 256

size* 46.148500 scale* 2.000000 nag* 5.547310 proj* 2

roll* 0.000000 pitch* 0.000000 yaw* 1.570800

estroll* 0.000000 estpitch* 0.000000 estyaw* 1.570800

500

time*50.000000 image=sl.img0500 width*900 height*900

1687.500000 -90.137000 -1.400000 -13.408000 -0.067162 0.000000

3.146600 0.000000 0.000000 -0.200000 0.000000 0.000000

0.000000 0.000000 -5.000000 0.000000 0.000000 0.000000

0.000000 -0.002778 0.000000 0.000000 0.000000 0.000000

9.000000 0.000000 -1.000000 0.000000 -2500.000000 0.000000

1689.912994 -13.385272

time* 50.000000 image* sl.seg0500

seg.ulx* 16 seg.uly* 318 seg.width* 256 seg.height* 256

tcx* 144.383000 tcy* 446.439000 tvx* 13.450800 tvy* 6.849180

out.ulx* -1 out.uly* -1 out.width* 256 out.height* 256

size* 15.094200 scale* 2.000000 mag* 16.960100 proj* 2

roll* 0.000000 pitch* 0.000000 yaw* 3.146600

estroll* 0.000000 estpitch* 0.000000 estyaw* 3.154900

CHAPTER 4. USER'S GUIDE 35

4.3 World-view Camera

4.3.1 Introduction

w.camera is the program for the world-view camera module. It is responsible

for retrieving an image based on the user specifications on the directory and

the format of a file name string. It uncompresses the image file as required

by the user. It should be pointed out that writing large uncompressed images

files(approximately 1MB per world-view image) incurs a great deal of disk

I/O overhead. Because of this, Khoros routine readimageQ for reading viff

image has been extended so that the extended routine can automatically

uncompress the image in cache memory and pipe the uncompressed data to

image reading process. This extended routine is employed by other programs,

which makes image uncompressing unnecessary.

Very often a set of related data files are stored in the same directory.

Besides sharing the same directory, these files have common prefix, varying

index or sequence numbers and common suffix. In other words, the paths of

the files have the following format:

directory/PrefixSequence-numberSuffix

No assumption has been made as to how the prefix, sequence and suffix

are separated. If they are indeed separated by some character such as u.n or
u-", the characters must be explicitly specified either in the prefix or suffix

part. Take my-img-011 .Z for example. The prefix is my-img-, the sequence

number 11, the suffix .Z

v-camera is ideal for retrieving a set of related files: all the desired target

input files must have the same prefix and suffix(if any) in addition to having

same directory. Only the sequence or index numbers are allowed to vary.

The sequence or index number comes from the input spec file, which is the

CHAPTER 4. USER'S GUIDE 36

output spec file of the dataControl module.

4.3.2 Command Line Options

Synopsis

v.canera [-dir directory'] [-prefix prefix} [-num_width num-width] [-suffix

suffix] -inSpec inSpec -outSpec outSpec [-img irngfile] [-uc <1 or 0>]

[-help]

Options

-dir directory Optional argument, directory specifies the directory in which

a desired input file resides.

Default: the current directory.

Example: -dir $HITERT_HOME/data/images

-prefix prefix Optional argument. It specifies the string that precedes the

sequence or index number in a file name.

Default: null

Example: -prefix si.img

-num-vidth num-width Optional argument, num-width specifies the width

that the numeric sequence number takes. If num-width is greater than

the number of the digits that sequence-number1 has, sequence-number

will be prepended with O's(zeros) in formating the file name string. For

example,

exampleX w.camera -inSpec inSpec -outSpec outSpec -num-width 4

Specified via -inSpec inSpec

CHAPTER 4. USER'S GUIDE 37

If sequence-number is 123, v.camera will try to find the file with the

name 0123 in the current working directory. If num-width is less than

the number of the digits that sequence-number has, num-width has no

effect. For example,

example?, v.camera -inSpec inSpec -outSpec -num 111 -num.vidth 2

exampleX v.camera -inSpec inSpec -outSpec -nun 111

In these two examples, if sequence-number is 123, v.camera will try to

find the file with the name 123 in the current working directory.

Default: unspecified (as long as effective sequence-number is)

Example: -num_vidth 4

-suffix suffix Optional argument. This option specifies the string in the

file name that follows the sequence digit string. If suffix is ".Z", the

input file is assumed to compressed by compress(1).

Default: null

Example: -suffix .dat

•inSpec inSpec Required argument. inSpec specifies the input specification

file. inSpec should be the output spec file from the dataControl mod-

ule. It contains the following data items in order: A sequence number, a

data record from the image description file at start-time (or end-time), a

data record from the description file for the segmented image database

at stari-time(oT end-time).

-outSpec outSpec Required argument. outSpec specifies the output specifi-

cation file. It is almost the same as the input inSpec, except that a file-

name is appended to the sequence number in the file. More specifically,

outSpec contains the following data items in order: a sequence number,

CHAPTER 4. USER'S GUIDE 38

a image filename(full path), a data record from the image description

file at start-time (or end-time), a data record from the description file

for the segmented image database at start-time(or end-time).

-img imgfile Optional argument, imgfile specifies the file to contain the

same data as those contained in the input file, which is specified via

directory, prefix, sequence-number, sequence-number, suffix. If this op-

tion is not specified, the default path name for imgfile is /tmp/v_cam. $USER,

where $USER is the login name of the user.

Default: /tmp/w_cam. $USER

Example: -img "luj/tmp/w.image

-uc 1 or 0 Optional argument. This switch has effect only if the input im-

age file has the suffix U.Z". If the input image file is compressed and

-uc 1 is specified, the image image will be uncompressed by using

uncompress(1) to produce the output image file. If the input image

file is compressed but -uc 0 is specified, the image will not be uncom-

pressed and the output image will be tagged with a.Z" to indicate that

the file is still compressed.

Default: 1

Example: -uc 0

-help Optional argument. When this argument is specified, v.camera prints

out a brief help message and exits gracefully.

A complete example may look as follows:

exampleX w_camera -inSpec inSpec -outSpec "luj/tmp/outSpec \

-dir $HITERT_HOME/data/images \

-prefix si.img -num.width 4 -suffix .Z \

-img ~luj/tmp/v_image -uc 0

CHAPTER*. USER'S GUIDE 39

This instructs «.camera to read the input spec file inSpec and to find out

the input image file $HITERT_H0ME/data/images/sl.img0010.Z and store

the input image as the Hie " luj / tap/w_ image. Since the input file name

has the trailing string .Z and -uc 0 is specified, the output images will be

"luj/tmp/w.image.Zand "luj/tmp/w.imagel.Z,provided that the inSpec

has two data records.

4.3.3 I/O File Specification

In this section, the format of input and output files are explicitly specified.

Any other programs wishing to communicate with «.camera via files must

follow the protocols or formats specified herein.

Input Data File

The input data file as specified by directory, prefix, sequence-number, num-

width and suffix can be in any format, no interpretation is done on the

content of this file. However, if the file name as specified above has the

trailing suffix U.Z", the input data file is considered to have been compressed

using compress (1).

-inSpec inSpec

This input spec file is the same as the output spec file of the dataControl

module. See Section 4.2.3.

-outSpec outSpec

It is almost the same as the input inSpec, except that a filename is appended

to the sequence number in the file. More specifically, outSpec contains the fol-

lowing data items in order: a sequence number, a image filename(full path),

a data record from the image description file at start-time(oT end-time), a

CHAPTER 4. USER'S GUIDE 40

data record from the description file for the segmented image database at

start-time(oT end-time). All data fields are separated by one or more white

space characters. A typical outSpec file may look as follows:

0 /tmp/w_img.luj

time«0.000000 image«si.iagOOOO width«900 height»900

2000.000000 -100.000000 -1.400000 0.000000 8.938900 0.000000

1.570800 0.000000 0.000000 -0.645000 0.000000 0.000000

0.000000 0.000000 -5.000000 0.000000 0.000000 0.000000

0.000000 -0.002778 0.000000 0.000000 0.000000 0.000000

9.000000 0.000000 -1.000000 0.000000 -2500.000000 0.000000

2002.504682 -0.446386

time* 0.000000 image« sl.segOOOO

seg.ulx» 0 seg.uly» 0 seg.width» 256 seg.height« 256

tcx» 164.716000 tcy« 444.135000 tvx» 45.836500 tvy- 5.356840

out.ulx» -1 out.uly» -1 out.width« 256 out.height« 256

size« 46.148500 scale« 2.000000 mag= 5.547310 proj« 2

roll« 0.000000 pitch» 0.000000 yaw« 1.570800

estroll» 0.000000 estpitch» 0.000000 estyaw« 1.570800

500 /tmp/w.img.lujl

time*50.000000 image«sl.imgOSOO width«900 height«900

1687.500000 -90.137000 -1.400000 -13.408000 -0.067162 0.000000

3.146600 0.000000 0.000000 -0.200000 0.000000 0.000000

0.000000 0.000000 -5.000000 0.000000 0.000000 0.000000

0.000000 -0.002778 0.000000 0.000000 0.000000 0.000000

9.000000 0.000000 -1.000000 0.000000 -2500.000000 0.000000

1689.912994 -13.385272

time« 50.000000 image* sl.seg0500

seg.ulx« 16 seg.ulya 318 seg.width« 256 seg.height« 256

tcx» 144.383000 tcy« 446.439000 tvx« 13.450800 tvy« 6.849180

CHAPTER 4. USER'S GUIDE 41

out.ulx« -1 out.uly- -1 out.width« 256 out.height« 256

size« 15.094200 scale« 2.000000 mag« 16.960100 proj« 2

roll« 0.000000 pitch« 0.000000 yaw» 3.146600

estroll« 0.000000 estpitch« 0.000000 estyaw« 3.154900

-img imgfilt

imgfile is the actual output image data file, imgfilt specifies the file to contain

the same data as those contained in the input file, which is specified via di-

rectory, prefix, sequence-number, sequence-number, suffix, with the following

exception: if the specified input file has the trailing string tt.Zw and -uc 1 is

specified, then it is assumed that the input file has been compressed by using

compress(1), and w.camera will filter the input file through uncompress(1)

and store the results as imgfile.

4.4 Tracking Camera

4.4.1 Introduction

Conceptually, the tracking camera takes as its input the world view image

and the control signals from the tracker, and then finds out the subimage

from the world view image. By doing this, t_camera effectively mimics a

tracking camera. Models of the dynamics of the camera servomechanism

may be incorporated.

However, in the batch mode, each individual program executes once and

then dies or exits. There is no mechanism for the tracking camera to get

any actual dynamic control signals from the tracker, since track executes

after t-camera. Therefore, in the batch mode, the "control signals" are pre-

specified by the user, and this information is passed to the display module

so that the viewing box of the tracking camera can be displayed in the world

view image. The main purpose for having such a rather dumb tracking

CHAPTERS USER'S GUIDE 42

camera in the batch mode is that the HiTert system can be more easily

modified to a loop mode system with dynamic feedback.

Currently, no dynamic model is built-in for t_camera to simulate the

servomechanism. A perfect and static model is assumed, i.e., the camera

can look at whatever direction instantly. Note, however, the dynamics of the

servomechanism may be simulated by modifying the control signals in this

ideal model.

4.4.2 Command Line Options

Synopsis

t.camera -world worldSpec -noise noise-intensity -o ouLspec [-help]

Options

-world worldSpec Required argument. The input spec file worldSpec should

be the same as the output spec file of w.camera module. worldSpec

contains the following data items in order: a sequence number, a image

filename(full path), a data record from the image description file at

start-time(oT end-time), a data record from the description file for the

segmented image database at start-time(ox end-time).

-noise noise-intensity Required argument, noise-intensity specifies the file

containing three floating numbers representing white noise intensities

for x, y and z directions respectively. The exact target position as ob-

tained from worldSpec are perturbed with Gaussian random values with

their standard deviations determined by noise intensities, respectively.

The perturbed values are used to simulate where the actual tracking

camera is looking at. By changing the input noise intensities, one may

mimic the tracking cameras with different tracking accuracies.

CHAPTER 4. USER'S GUIDE 43

-o omLspec Required argument. The output spec file ouLspec is almost the

same as the input spec file worldSpec, except that additional informa-

tion regarding where the the tracking camera is looking at the pixel

location of the boresight in the world-view image.

-help Optional argument. When this argument is specified, t-caaera prints

out a brief help message and exits gracefully.

4-4.3 I/O File Specification

-world worldSpec

The input file worldSpec is the world view image spec file created by w_camera.

The file format has been specified in Section 4.3.3.

-noise noise-intensity

The input file noise-intensity is an ASCII file that contains the following

three floating numbers separated by one or more mixed white space charac-

fers(blanks, tabs, newlines):

t>i t>2 v3

where vj, t>2 and V3 are the standard deviations of the tracking residual errors

in the cartesian inertial coordinates. The units for vx, v2 and t;3 are meters,

meters and meters, respectively.

A typical input file track may look as follows:

0.5 0.5 0.12

-o ouLspec

The output file ouLspec consists of following data items: a sequence number,

a image filename(full path), three inertial cartesian coordinates indicating

CHAPTER 4. USER'S GUIDE 44

where the tracking camera is looking at, two integers representing the pixel

location of the tracking camera boresight in the world-view image, a data

record from the image description file at start-time (or end-time), a data

record from the description file for the segmented image database at start-

time(oT end-time).

4.5 Image Processor

4.5.1 Introduction

Conceptually, the image processor segments the input images from the track-

ing camera and outputs the segmentation results, such as the centroid pixel

location, line-of- sight (LOS) of the target, etc. However, segmentation is very

CPU-intensive and is not suitable for on-line interactive simulation. As a

result, all the images have been pregenerate and segmented.

The centroid image processor ipc reads the description files for the

world-view and segmented image databases and performs the on-line mea-

surement from the segmentation results and target range information. Given

the target pixel location and camera states, the line-of-sight of the target can

be computed. With additional target range information, target locations can

be found.

4.5.2 Command Line Options

Synopsis

ipc -iaglnfo imglnfoFile -seglnfo seglnfoFile -inSpec inSpec [-dir di-

rectory'] [-prefix prefix] [-num_width num-width] [-suffix suffix] -outSpec

outSpec -meas measurement [-img imgfile] [-uc <1 or 0>] [-help]

CHAPTER 4. USER'S GUIDE 45

Options

-imglnf o imglnfoFile Required argument. It specifies the segment of the

description file for the world-view image database. This file should be

the output of the data control module. It contains following items (See

Section 4.2.3):

• time at which the image is to be generated. This is identified by

a tt keyword=valuen pair, with the keyword being tiM.

• the image identifier which maps to the corresponding image file.

This is identified by a " keyword=valuen pair, with the keyword

being image.

• the image width in number of pixels. This is identified by a u

keyword=value" pair, with the keyword being width.

• the image height in number of pixels. This is identified by a tt

ktyword=valutn pair, with the keyword being height.

• the tank's state at that instant which includes

t xi yi zi xi yi zj R S T R S T

• the camera's state which includes

*c/ Vd Zd ^c/ y'd z'd Rc Se Tc Re Sc Tc

fov fov hither yon yön

where xc/, yc/, zc/, x'c/, j/c/, z\\ denote the position and velocity

components of the camera at the instant in global inertia! co-

ordinate system. Rc, SCJ Tc, Rc, 5C, Tc refer to the yaw, pitch

, roll angles and their rates, fov and fov refer to the field of

view(in degrees) and its time rate of change(in degrees per sec-

ond), respectively; hither, hither denote the position of the front

CHAPTER 4. USER'S GUIDE 46

clipping plane and its rate in the camera coordinate system; yon,

yon position of the back clipping plane and its rate in the camera

coordinate system. The camera coordinate system is such that its

initial orientation aligns with the inertial coordinate system, and

the camera is always looking towards the negative z direction of

the body-fixed right-handed coordinate system.

• range of the target to camera and range rate.

-seglnf o seglnfoFile Required argument. It specifies the segment of the

description file for the segmented image database. This file should be

the output of the data control module. The file is composed of the data

records of the following form (See Section 4.2.3):

t ime«2 image»s1.seg0020

seg_ulxs90 seg_uly*316 seg_vidth»256 seg_height»256

tcx»221.809 tcy=444.128 tvx=46.5792 tvy»5.43854

out_ulx«-l out_uly»-l out_vidth»256 out„height»256

size»46.8957 scale»2 mag»5.45893 proj»2

roll*0 pitch=0 yaw=1.5609

estroll*0 estpitch=0 estyav«!.5708

-inSpec inSpec Required argument. The input spec file inSpec is the output

spec file from the tracking camera. It consists of following data items:

a sequence number, a image filename(full path), three inertial cartesian

coordinates indicating where the tracking camera is looking at, two in-

tegers representing the pixel location of the tracking camera boresight

in the world-view image, a data record from the image description file

at start-time(oT end-time), a data record from the description file for

the segmented image database at start-time (or end-time). See Sec-

tion 4.4.3.

CEA#TEB4. USER'S GUIDE 47

-dir directory Optional argument, directory specifies the directory in which

a desired segmented input image file resides.

Default: the current directory.

Example: -dir $HITERT_HOME/data/i«ages/scenel..seg

-prefix prefix Optional argument. It specifies the string that precedes the

sequence or index number in the file name.

Default: null

Example: -prefix sl.seg

-num_width num-width Optional argument, num-width specifies the width

that the numeric sequence number takes. If num-width is greater than

the number of the digits that sequence-number1 has, sequence-number

will be prepended with 0's(zeros) in formating the file name string.

-suffix suffix Optional argument. This option specifies the string in the

file name that follows the sequence digit string. If suffix is *.Z", the

input file is assumed to compressed by compress (1).

Default: null

Example: -suffix .dat

-outSpec outSptc Required argument. The output spec file outSpec is al-

most the same as the input spec file seglnfoFile, except it has the

segmented image file name following the word-view image filename.

More specifically, outSpec contains the following data items in order:

a sequence number, a image filename(full path), a segmented image

filename(full path), a data record from the image description file at

start-time (or end-time), a data record from the description file for the

segmented image database at start-time(or end-time).

'specified via -inSp«c inSpec

CHAPTER 4. USER'S GUIDE 48

-■•as measurement Required argument, measurement is the file containing

the measurement data about the cartesian coordinates of the target.

This file has the following format:

t x-measure y-measure z-measure

where x-measure, y-measure and z-measure are position measurements

of the target centroid at time t. These floating numbers t, x-measure,

y-measure and z-measure have the following units, respectively:

seconds meters meters meters

-img imgfile Optional argument, imgfile specifies the file to contain the

same data as those contained in the input file, which is specified via

directory, prefix, sequence-number, sequence-number, suffix. If this op-

tion is not specified, the default path name for imgfile is /tmp/iplmg.|USER,

where $USER is the login name of the user.

Default: /tmp/w.cam. $USER

Example: -img ~luj/tmp/ip_img

-uc 1 or 0 Optional argument. This switch has effect only if the input im-

age file is compressed and has the suffix tt.Z". If the input image file

is compressed and -uc 1 is specified, the image image will be uncom-

pressed by using uncompress (1) to produce the output image file. If

the input image file is compressed but -uc 0 is specified, the image will

not be compressed and the output image will be tagged with U.Z" to

indicate that the file is still compressed.

Default: 1

Example: -uc 0

CHAPTER 4. USER'S GUIDE 49

4.5.3 I/O File Specification

-imglnfo irnglnfoFile

The input ASCII file irnglnfoFile is the segment of the world-view image

database description file of the interest. It should be the output of the

dataControl module. See Section 4.2.3.

-seglnfo seglnfoFile

The input ASCII file seglnfoFile is the segment of the segmented image

database description file of the interest. It should be the output of the

dataControl module. See Section 4.2.3.

-inSpec inSpec

The input spec file inSpec is the output spec file from the tracking camera.

See Section 4.4.3.

-outSpec outSpec

The output spec file outSpec contains the following data items in order:

a sequence number, a image filename(full path), a segmented image file-

name(fullpath), a data record from the image description file at start-time (or

end-time), a data record from the description file for the segmented image

database at start-time(oT end-time). All these data fields are separated by

the mixed white space c/iaracfers(blanks, tabs, newlines). A typical output

spec file may look as follows:

0 /tmp/w_iag.luj /tmp/iplmg.luj

1999.836125 -100.268080 -1.292417 163 445

time*0.000000 image=sl.imgOOOO vidth»900 height»900

2000.000000 -100.000000 -1.400000 0.000000 8.938900 0.000000

CHAPTER 4. USER'S GUIDE 50

1.570800 0.000000 0.000000 -0.645000 0.000000 0.000000

0.000000 0.000000 -5.000000 0.000000 0.000000 0.000000

0.000000 -0.002778 0.000000 0.000000 0.000000 0.000000

9.000000 0.000000 -1.000000 0.000000 -2500.000000 0.000000

2002.504682 -0.446386

time* 0.000000 image" sl.segOOOO

seg.ulx» 0 seg.uly» 0 seg.width» 256 seg.height» 256

tcx- 164.716000 tcy» 444.135000 tvx» 45.836500 tvy- 5.356840

out.ulx» -1 out.uly» -1 out.width« 256 out.height« 256

size« 46.148500 scale« 2.000000 mag* 5.547310 proj» 2

roll» 0.000000 pitch» 0.000000 yaw» 1.570800

estroll» 0.000000 estpitch» 0.000000 estyaw» 1.570800

500 /tmp/w.img.lujl /tmp/iplmg.lujl

1687.603661 -89.648265 -1.655478 146 445

time»50.000000 image«sl.img0500 width»900 height*900

1687.500000 -90.137000 -1.400000 -13.408000 -0.067162 0.000000

3.146600 0.000000 0.000000 -0.200000 0.000000 0.000000

0.000000 0.000000 -5.000000 0.000000 0.000000 0.000000

0.000000 -0.002778 0.000000 0.000000 0.000000 0.000000

9.000000 0.000000 -1.000000 0.000000 -2500.000000 0.000000

1689.912994 -13.385272

time* 50.000000 image* sl.seg0500

seg_ulx» 16 seg.uly» 318 seg.width» 256 seg.height» 256

tcx« 144.383000 tcy« 446.439000 tvx« 13.450800 tvy» 6.849180

out.ulx« -1 out_uly» -1 out„width« 256 out.height» 256

size» 15.094200 scale* 2.000000 mag* 16.960100 proj* 2

roll» 0.000000 pitch* 0.000000 yaw» 3.146600

estroll» 0.000000 estpitch» 0.000000 estyaw» 3.154900

CHAPTER 4. USER'S GUIDE 51

-■eas measurement

The output ASCII data file measurement consists of measurement data. Each

instant is associated with a data record consisting of the four floating numbers

separated by the mixed white space characters:

t x-measure y-measure z-measure

The data records making up measurement are separated by one or more

mixed white space characttrs(blanks, tabs, newlines). Within each data

record, there are four floating numbers t, x-measure, y-measure and z-measure,

which are also separated by one or more mixed white space characters, x-

measure, y-measure and z-measure are the position measurements of the

target centroid at the time t. The units of t, x-measure, y-measure and

z-measure are seconds, meters, meters and meters, respectively.

A typical abridged measurement data file having 5 data records may look

as follows:

2.000000 2000.109179 -79.822001 -1.498194

2.100000 2000.205959 -78.792146 -1.485431

2.200000 2000.203332 -77.740134 -1.485436

2.300000 2000.213978 -76.335661 -1.508155

2.400000 2000.211513 -75.260915 -1.515856

Input Data File

The input data file as specified by directory, prefix, sequence-number, num-

width and suffix can be in any format, no interpretation is done on the

content of this file. However, if the file name as specified above has the

trailing suffix a.Zn, the input data file is considered to have been compressed

using compress (1).

CHAPTER 4. USER'S GUIDE 52

-img imgfile

imgfile is the actual output image data file, imgfile specifies the file to con-

tain the same data as those contained in the input file, which is specified via

directory, prefix, sequence-number, sequence-number, suffix, with the follow-

ing exception: if the specified input file has the trailing string a. Z" and -uc

1 is specified, then it is assumed that the input file has been compressed by

using compress(1), and ipc will filter the input file through uncompress(1)

and store the results as imgfile.

4.6 Tracker

4.6.1 Introduction

track is the tracker program, responsible for on-line estimations of the

tracker states, based on the measurement data from the image processor.

track is an a-ß-7 Kaiman filter using the position measurements of the tar-

get centroid. The built-in Kaiman filter gains are: 0.8790, 0.8790, 0.8790. To

see how the gains are selected, interested reader may refer to Appendix A.

The inertial reference coordinate system is shown in Figure 1.2. Even

thought the terrain in the scenario being considered is flat, track does state

estimation for the x, y and z components, because the measurement output

from the image processor is inherently 3-D, i.e. it contains three measurment

outputs at each sampling instant.

4.6.2 Command Line Options

Synopsis

track -ip ip-file [-ic ic-file] -o ouUfile [-help]

CHAPTER 4. USER'S GUIDE 53

Options

-ip ip-ße Required argument, ip-ße is the data file containing the position

measurements from the image processor. It should be the output from

the image processor, ip-ße has the following format:

t x-measure y-measure z-measure

where x-measure, y-measure and z-measure are position measurements

of the target centroid at time /.

-ic ic-file Optional argument. The ic-file contains the initial conditions for

the states of the tracker. It consists of the following data:

toixxyyyzzz

where x, x, i, y, y, y, £, z and z are the initial conditions at the starting

time to. If this option is not specified, track will set i, x, x, y, y, y z,

z and i all to zeros as the default values for the initial conditions.

-o out-file Required argument, out-file contains the state estimation results.

It has the following format:

txixyyyzzz

where i , x, z, y, y, y z, z, z are the estimated states at the time t.

-help Optional argument. When this argument is specified, track prints

out a brief help message and exits gracefully.

4.6.3 I/O File Specification

-ip ip-file

The input ASCII file ip-file is the the measurement data file from the image

processor. See Section 4.5.3.

CHAPTER 4. USER'S GUIDE 54

-ic ic-file

ic-file is the initial condition file, consisting of following numbers:

t0xxxyyyzzz

where x, x and x are the position, speed and acceleration of the target at

time to* to has the units seconds; whereas x, x and x have units meters,

meters/seconds and meters/(seconds) , respectively. Similar remarks apply

to y, y, y, £, i and £.
The 10 floating numbers tQ. x, x, y, y, y, i, £ and z are separated by one

or more mixed white space characters. A typical ic-file may look like this

0.0

2.0000«*03 0.0000e+00 0.0000e+00

-1.0000e+02 0.0000e+00 0.0000e+00

-1.4 0 0

-o out-file

out-file is the output data file produced by track. The file contains the

estimation results for the states of the o>/?-7 Kaiman filter, out-file consists

of the data records of the form:

txxxyyyzzz

The data records making up out-file are separated by one or more mixed white

space cAarac*ers(blanks, tabs, newlines). Within each data record, there are

10 floating numbers t% x, x,, x, y, y, y, £, £, z. i, x and x are position, speed

and acceleration of the target in inertial x component at time t0. t has the

units seconds; whereas x, x and x have units meters, meters /seconds and
A 9 mm * m

meters/(seconds) , respectively. Similar remarks apply to y, y, y, i, i, z.

A typical abridged out-file having 5 data records may look like this

2.0 2000.139048 0.067167 -0.042767

CHAPTER 4. USER'S GUIDE 55

-79.399693 11.831204 1.019657

-1.500131 0.045759 0.060516

2.1 2000.130446 0.028983 -0.080865

-78.425036 11.453766 0.481003

-1.494273 0.054009 0.062987

2.2 2000.171127 0.106619 0.015452

-77.462902 11.085122 0.012754

-1.484086 0.070346 0.074265

2.3 2000.198152 0.144723 0.056529

-76.494522 10.771683 -0.340856

-1.477363 0.076240 0.072543

2.4 2000.220910 0.168341 0.076715

-75.338722 10.917937 -0.138229

-1.484948 0.048538 0.033268

4.7 Predictor

4.7.1 Introduction

predict is the predictor program, responsible for computing the future posi-

tion of the target. The predict-ahead or lead time is the time of the expected

flight time of the projectile intercepting the target, predict is used in con-

junction with the a-ß-j Kaiman filter. The prediction equation used by

predict is as the follows:

Xi{t + *p|0 = it(0 + it(t)tp + \/2h(t)tp
2

where t is the current time, tp the predict-ahead or lead time, xt(t + tp\t) the

predicted target position at the future time t + tp given the estimates at the

present time t; x,(0, ii(0» *•(*) are the estimates of the current position,

CHAPTER 4. USER'S GUIDE 56

speed and acceleration, respectively. The subscript i applies to each x, y and

z component, respectively.

4.7.2 Command Line Options

Synopsis

predict -i in-file [-tp tp] -o out-file [-help]

Options

-i in-file Required argument, in-file is the input file containing the state

estimation results from the a-ß-f tracker. The file has the following

format:
txxxyyyzzz

where £, x and x are the position, speed and acceleration of the target

at time to- t has the unit of seconds; whereas i, x and x have units of

meters, meters/seconds and meter s / (seconds) , respectively. Similar

remarks apply to t/, y, y, i, z and i, respectively. These data are

separated by one or more mixed white space characters.

-tp tp Optional argument, tp is the predict-ahead or lead time, which is

the expected flight time of the projectile intercepting the target, tp is

a floating number and has the unit of seconds.

Default: 2

Example: -tp 1

-o out-filt Required argument, out-file is the output data file produced by

predict. This file has the following format:

t tf x(tf\t) y(tf\t) z(tf\t)

CHAPTER 4. USER'S GUIDE 57

where t is the current time, tj the future time(*/ = t + tv), x(tj\t),

y(tf\t) and z(tj\t) the predicted target position coordinates at */ based

on the current state estimates at t.

-help Optional argument. When this argument is specified, predict prints

out a brief help message and exits gracefully.

4.7.3 I/O File Specification

-i in-file

This input file in-file to predict is the output state estimation file from

track. The file format has been specified in Section 4.6.3.

-o out-file

out-file is the output data file produced by predict. The file consists of the

data records of the form:
t tf x(tf\t) y(tf\t) z(tj\t)

The data records making up out-file are separated by one or more mixed

white space c/iarac*ers(blanks, tabs, newlines). Within each such a data

record, t is the current time, tf the future time(*/ = t + tp), x(tj\t), y(tj\t)

and z(tf\t) the predicted target position at tf based on the current state

estimates at t. These floating numbers are separated by one or more mixed

white space characters, t, tf, x(t/|t), y(tf\t) and z(tf\t) have the following

units, respectively:

seconds seconds meters meters meters

A typical abridged out-file having 5 data records may look as follows:

2.000000 4.000000 2000.187848 -53.697971 -1.287581

2.100000 4.100000 2000.026682 -54.555498 -1.260281

2.200000 4.200000 2000.415269 -55.267150 -1.194864

CHAPTER 4. USER'S GUIDE 58

2.300000 4.300000 2000.600656 -55.632868 -1.179797

2.400000 4.400000 2000.711022 -53.779306 -1.321336

4.8 Error Analysis

4.8.1 Introduction

errAnaly is the program that performs the error analysts for the HiTert

system. errAnaly takes as its inputs the prediction data and the reference

exact data, and computes prediction errors as well as the statistics on the

error data.

Two types of errors are computed depending on the command line option

specified: inertial component errors and dartboard errors . The inertial com-

ponent errors are computed by finding the differences between the predicted

target positions and the actual target positions in each inertial component

x, y and z, respectively. More specifically, the inertial component errors are

defined as follows:

€i(t) = Xi{t) - Zi{t)

where et(t) is the error at t, xt{t) the predicted inertial target position co-

ordinate, Xi(t) the exact inertial target position coordinate. The subscript i

applies to each inertial x, y and z component, respectively. These errors are

used subsequently to perform the error statistics.

The dartboard errors, on the other hand, are the perspective projections

of the inertial error vectors onto the dartboard as seen by an observer1.

Figure 4.2 shows the dartboard at an arbitrary instant t. Point P is the

predicted position of the target at t, PQ the exact position, O the location of

the observer. The dartboard x is centered on the point PQ, the inertial error

vector at this instant is given by P0P. The perspective projection of PQP

Currently, the observer is fixed on the tracking camera.

4. USER'S GUIDE 59

Figure 4.2: Definitions of the dartboard

onto the dartboard plane ir is given by PQP'. Note that the intersection of

the line OP and the dartboard plane ir is F. The components of PQP* in

the x'y' plane are the dartboard errors. Appendix B has the derivations on

how to find the dartboard errors. Please note that the dartboard errors are

mainly intended for graphical displaying purpose. The error statistics are

still computed based on the inertia! component errors.

4.8.2 Command Line Options

Synopsis

•rrAnaly -pred predfile -exact exactfile [-showD&rt showDart] [-tbf tbf]

[-tburst tburst] -outSpec outSpec [-outErr outErr] [-help]

CHAPTER 4. USER'S GUIDE 60

l* tngtexffgejireitbf)

'interval(tburst)

t.

t, end time
t p predict-ahead or lead time

— exact trajectory
— predicted trajectory

Figure 4.3: Definition of the burst interval

Options

-pred predfile Required argument, predfile is the data file containing the

prediction results from predict. The file has the following format:

t tf i(tf\t) y(ts\t) z(tf\t)

where t is the current time, tf the future time(£/ = t + £p), x(tj\t),

y(tf\t) and z(t/\t) the predicted target position coordinates at tj based

on the current state estimates at t. These floating numbers t, tf,

x(tf\t), y(tf\t) and z(tf\t) have the following units, respectively:

seconds seconds meters meters meters

-exact exactfile Required argument, exactfile contains the exact positions

of the target. This file has the following format:

t x(t) y(t) z(t)

where t is the current time, x(t), y(t) and z(t) the exact target position

coordinates at t. These floating numbers r, x(£), y(t) and z(t) have the

CHAPTER 4. USER'S GUIDE 61

following units, respectively:

seconds meters meters meters

-«howDaxt showDart Optional argument. This boolean argument showDart

specifies whether or not the dartboard errors should be computed. If

showDart is false, i.e., O(zero), errAnaly will compute the inertial

component errors and write the error data to a file(see option tt-outErr

outErr' '); otherwise, errAnaly will compute the dartboard errors and

and write the error data to a file. Note the error data computed are

intended for graphical displaying purpose. The statistics are always

computed based on the inertial component error data.

Default: 1

Example: -showDart 0

-tbf tbf Optional argument, tbf is the track-before-fire time(See Figure 4.3).

tbf is a floating number and has the unit of seconds.

Default: tp

Example: -tbf 5

-tburst tburst Optional argument, tburst is the burst interval over which

projectiles are fired to intercept the target(See Figure 4.3). tburst is

a floating number and has the unit of seconds. The relevant statistics

are computed based on the data during this burst interval.

If tburst is not specified, the default value of (endJime — start Jime —

tbf) is used, where start .time and endJime are the instants at which

the tracking system starts and terminates, respectively, start Jime

and endJime are controlled by the data control module. errAnaly

determines the values of start Jime and endJime from the numbers in

the input data files.

CHAPTERS USER'S GUIDE 62

If tburst is specified and is greater than (endJime — start Jime - tbf),

tburst will be set to (endJime - start Jime — tbf) by errAnaly.

Default: (endJime — start Jime — tbf)

Example: -tburst 10

-outSpec outSpec outSpec contains the name or path of the file containing

computed error data, and prediction error statistics. The file has the

following format:

*o te tp tbf

np nthj nbuT3t nburat_end

max\ts\ mts rmsix

max\(y\ mty rmsty

max\tt\ mtt rmslx

max\ta,\ mta, rmstat

max\Cel\ mUl rms<el

showDart

error Data Filename

tburst

where t0, te, tp, tbf and tburst are the start Jime, endJime, predict-

ahead time, track-before-fire time, burst interval, respectively; max\€%\,

mCt, rmslt are the maximum absolute error, mean and RMS (Root Mean

Square) value of errors in inertial x, inertial y, inertial z, azimuth and

elevation components, respectively; showDart is a boolean having the

meaning as that specified under the option "-showDart showDart".

errorDataFilename is the path of the file containing the error data(see

below).

-outErr out Err Optional argument, out Err specifies the name or path of

the file to contain the computed error data. If this option is not spec-

CHAPTER 4. USER'S GUIDE 63

ificd, the default path name for outErr is /tap/v-caa. IUSER, where

$USER is the login name of the user.

The format of the file outErr depends on the boolean flag showDart

specified. If showDart is false, i.e., 0, outErr contains the inertial

component errors and has the following format:

t t, ex(tf\t) tv(t,\i) e,(tf\t)

If showDart is true, i.e., non-zero, outErr contains the dartboard errors

and has the following format:

t tf dx(tf\t) dy(tf\t)

Default: /tmp/errAnaly. $USER

-help Optional argument. When this argument is specified, err Analy prints

out a brief help message and exits gracefully.

4.8.3 I/O File Specification

-pred predfile

predfile is an input file to errAnaly. This file contains the prediction results

from predict. See Section 4.7.3.

-exact ezactfile

The input ASCII file exact file contains the reference exact data of the target

trajectory. It should be the output of dataControl. See Section 4.2.3.

A typical exactfile having 5 data records may look as follows:

2.000000 2000.100000 -79.946000 -1.400000

2.100000 2000.200000 -78.837000 -1.400000

2.200000 2000.200000 -77.718000 -1.400000

CHAPTER 4. USER'S GUIDE 64

2.300000 2000.200000 -76.590000 -1.400000

2.400000 2000.200000 -75.453000 -1.400000

-outSpec outSpec

txactfilt is an output file from errAnaly. The file contains the following data,

which are separated by one or more mixed white space characters(blanks,

tabs, newlines).

to tc tp tbf tburst

np ntbf n(>ur3t n^rsuend

max|ex| mtx rms(j

max|e>| mtv rmsiy

max\Cfi mlt rmstl

max\taz\ mCa, rmstat

maxM m<el rms,el

showDart

error Data Filename

where £0, te, tP, tbf and tburst are the start Jime, endJime, predict-ahead

time, track-before-fire time, burst interval, respectively, and they have the

unit of seconds; max\c%\, rn(iJ rmslt(i takes x, y, or z) are the maximum abso-

lute error, mean and RMS (Root Mean Square) value of the errors in inertial

x, y and z components, respectively, and they have the unit of meters; when i

takes az or e/, max|e,|, me,, rmstt are the errors in the azimuth and elevation

components, respectively, and they have the unit of radians; showDart is a

boolean having the meaning as that specified under the option "-showDart

showDart". error Data Filename is the path of the file containing the error

data and is the same as the file name outErr.

CHAPTER 4. USER'S GUIDE 65

-outErr outErr

outErr is an output file from errAnaly. The contents or format of the file

depends on the boolean flag showDart specified via the command line option.

If showDart is false, i.e., 0, outErr contains the inertial component errors

and is composed of the data records of the form:

t ts ex(tf\t) ev(tf\t) e,(«/|0
These data records are separated by one or more mixed white space charac-

ters (blanks, tabs, newlines). Within each data record, there are 5 floating

numbers t, tf, tx(tj\t), ty(tf\t), tz(tf\t), which are also separated by one

or more mixed white space characters, t is the current time, t/ the future

time(t/ = t + tp)\ tx(tf\t), ty{tf\t), tz(tj\t) are the inertial component pre-

diction errors at tf based on the current state estimates at t. t, tf, £x(tf\t),
ey(h\t)-> e*(M0 have the units of seconds, seconds, meters, meters and
meters, respectively.

If showDart is true, i.e., non-zero, outErr ontains the dartboard errors

and is composed of the data records of the form:

t tf dX(tf\t) dy(tf\t)

These data records are separated by one or more mixed white space charac-

ters. Within each data record, there are 4 floating numbers t, tf, dx(tj\t) and

dy(tf\t), which are also separated by one or more mixed white space char-

acters, t is the current time, tj the future time(</ = t -f tp); dx(tj\t) and

dy(tj\t) are the dartboard component errors, t, tj, dx{tj\t) and dy(tj\t) have

the units of seconds, seconds, meters, meters , respectively

4,9 Instrumentation Module

4.9.1 Introduction

xhitert is the instrumentation module program, responsible for display-

ing world-view images, tracking camera images, segmented images and error

CHAPTER 4. USER'S GUIDE 66

analysis results. The program must be executed under the XI1 windowing

environment.

..■.■.•.'.•.■.•.■.■.■.■.■,•,■,•■:■>■>■■•■■■,'■

W$$Vx

X\%&

,v.v.v.v. $*&$*$.
. . world view .■:

'■'■^Y'^v.-:--':-\\:\l:- ::■■■■■■■'''■■'
■:.■■■:■.:: ■■:■■■■:■,■■::■ ,'::.:-;:-.>:::::

:•:■:•:■:■:■:■;■:■:■:■:;■:■■.■::■:■;■:■:■:■::■:;::;::::::::;::::::::;::

■:..:■,-■;.■ :..■.-•■:..:.::.;..:

■::;^; :::::::::>:■:■:■; ::;:-:.:-:;r:::;;::::::-::;:.::;':

;>>> Hacking camera ;X;X

;v image proceaior $•

*- ' • * • • -

dmboard mjectoriei otati sties

Figure 4.4: The window arrangement.

During its execution, xhitert will pop up a window of almost a full-

screen size. This window consists of 6 subwindows(See Figure 4.4). The

world-view image displayed has been shrinked by a factor of 2 in order to fit

into the window. The red box in the world view image indicates where the

tracking camera is looking at. Also displayed are the corresponding tracking-

camera image, which is not scaled, and the segemented binary image, which

is normalized. In the batch mode, only images corresonding to a single user

specified instant are displayed1.

In the subwindow displaying the trajectories, the red curve is the pre-

dicted trajectory, while the green curve is the exact trajectory.

xhitert is built on top of Xlib. It runs much faster on a display support-

ing 8-bit pseudo-color than on a monochrome display, since on monochrome

display xhitert has to dither the large color images to black and whtie ones.

1 However, the dartboard and trajectory windows display the results for the whole time
period of the operation.

CHAPTER 4. USER'S GUIDE 67

4.9.2 Command Line Options

Synopsis

xhitert -world worldSpec -camera cameraSpec -ip ipSpec -pred predfile

-exact ezactfile -errSpec errSpec [-display display] [-demo demo] [-help]

Options

-vox-Id worldSpec Required argument. worldSpec is world-view image spec

file. It should be the output spec file of the w.camera module. It

contains the following data items in order: A sequence number, a data

record from the image description file at start-time (or end-time), a data

record from the description file for the segmented image database at

start-time(oT end-time).

-camera cameraSpec Required argument. It should be the output spec file

of t.camera module. cameraSpec consists of following data items: a

sequence number, a image filename(full path), three inertia! cartesian

coordinates indicating where the tracking camera is looking at, two

integers representing the pixel location of the tracking camera boresight

in the world-view image, a data record from the image description file

at start-time(oT end-time), a data record from the description file for

the segmented image database at start-time (or end-time).

-ip ipSpec Required argument. It should be the output spec file from the

ipc module. ipSpec contains the following data items in order: a se-

quence number, a image filename(full path), a segmented image file-

name(fullpath), a data record from the image description file at start-

time(oT end-time), a data record from the description file for the seg-

mented image database at start-time(or end-time).

CHAPTER 4. USER'S GUIDE 68

-pred prtdfile Required argument, prtdfile is the input file containing the

prediction data from predict. It should be the output of the predictor.

This file has the following format:

t tj x(tj\t) y(tf\t) z(tf\t)

where t is the current time, tf the future time(*/ = t + *p), x(tj\t),

y(t/\t) and z(tj\t) the predicted target position coordinates at tj based

on the current state estimates at t.

-exact exactfile Required argument, exactfile is the input file containing

the reference exact trajectory data. It should be the output of the

dataControl module. This file has the following format:

t x(t) y(t) z(t)

where t is the current time, x(t), y(t) and z(t) the exact target position

coordinates at t. These floating numbers t, x(t), y(t) and z(t) have the

following units, respectively:

seconds meters meters meters

-errSpec errSpec Required argument. errSpec is the error spec file from

errAnaly. input spec file has the following format:

t0 U tp tbf

np ntbf Tlburst ^burst-end

max\l9\ mtt rmstx

max\(y\ mCy rmslv

max\ta\ m€t rms(t

maxt<aj| mea, rmsCat

maxKi\ m<<< rmstti

showDart

tburst

CHAPTER 4. USER'S GUIDE 69

error Data Filename

where to, U, tp, tbf and tburst are the startJirne, endJime, predict-

ahead time, track-before-fire time, burst interval, respectively; max^,

mtt, rmstt are the maximum absolute error, mean and RMS (Root Mean

Square) value of errors in inertial x, inertial y, inertial z, azimuth and

elevation components, respectively; show Dart is a boolean having the

meaning as that specified under the option "-showDart showDarty> in

errAnaly. error Data Filename is the path of the file containing the

error data.

-display display Optional argument, display specifies where to display the

images and the results. It is a string of the format uhost:display .■screen".

Default: $DISPLAY

Example: delta:0

-demo demo Optional argument. This boolean flag demo specifies whether

or not to display the tracking results in a pseudo real-time mode. If

demo is false, i.e., 0, all the tracking results will be blasted to the

screen almost at the same time; if demo is true, however, xhitert will

be in the pseudo real-time mode, displaying the tracking results one at

a time.

Default: 0

Example: -demo 1

4.9.3 I/O File Specification

-world worldSpec

worldSpec is an input spec file produced by v.camera. See Section 4.3.3.

CHAPTER 4. USER'S GUIDE 70

-camera cameraSpec

cameraSpec is an input spec file produced by t.camera. See Section 4.4.3.

-ip ipSpec

ipSpec is an input spec file produced by ip.

-pred predfile

predfile is an input data file produced by predict. See Section 4.7.3.

-exact exactfile

exactfile is an input data file containing the exact reference trajectory data.

See Section 4.8.3.

-errSpec errSpec

errSpec is an input spec file produced by errAnaly. See Section 4.8.3.

Image Data File

The input image data file as specified by ImageFileName in the worldSpec

must be a Khoros viff image. See Section 4.3.3.

Error Data File

The input error data file as specified by errorDataFilename is produced by

errAnaly. The error data file has the format as specified in Section 4.8.3.

Chapter 5

World-view Image Database

5.1 Introduction

One of the important part in the simulation of the HiTert system is to simu-

late the image acquiring system. Various factors and considerations lead to

the decision of building an image database by pregenerating a temporal se-

quence of images. Individual images in the database can be can be retrieved

or played back for the study of image processing algorithms and the tracking

system. With the tool of the image generation program, different scenarios

can be simulated to study the HiTert system. In this chapter, discussions

will be concentrated on the specific scene that has been constructed and the

images of which have been actually stored on the disk.

5.2 Trajectory Data

The scenario under the consideration is illustrated in Figure 1.2 and repro-

duced in Figure 5.1. First, the geometric trajectory that a land vehicle,

equipped with certain driving logic, may traverse is envisioned or proposed.

It is then endowed with the time information, i.e. the velocity and the head-

ing angle profiles of a generic tank along the trajectory are designed. Note

71

CHAPTERS. WORLD-VIEW IMAGE DATABASE 72

that on a flat terrain the velocity and the heading angle profiles completely

determines the trajectory, given the initial conditions. It is assumed that

heading direction of the vehicle is along the tangential direction of the tra-

jectory. This assumption is generally valid for a tracked vehicle(e.g. tank)

with no skidding. Differentiation of the heading angle with respect to time

yields the angular velocity of the tank. The product of the angular velocity

and the speed at a point along the trajectory gives the centripetal acceleration

of the tank. This centripetal acceleration depends on the lateral frictional

characteristics between the terrain and the track, and is constrained, under

the no-skidding condition, by the following equation:

an = uv < ntg

where an is the centripetal acceleration, u the angular velocity of the tank,

v the forward speed, \it the lateral frictional coefficient, g the gravitational

constant.

The velocity profile is designed in such a way that its time rate of change

falls within the acceleration and deceleration capability of a generic tank(e.g.

Ml tank). From the velocity profile and heading angle profile, the trajec-

tory can be constructed through the numerical integration. The constructed

trajectory can further be examined to see if it is indeed the desired one.

Since a target may take any maneuvers as the driver deems necessary in

the real environment, the trajectory produced from the above is realistic as

long as the dynamic constraints are not violated.

The trajectory data used in generating image database are plotted in

Figure 1.3 and is reproduced in Figure 5.2. One of the important features

in the plots is that when the tank makes a turn it decelerates, while when it

travels along a straight path it accelerates or keeps at a higher speed.

CHAPTERS. WORLD-VIEW IMAGE DATABASE

■■ -', ■

78

/

ye /

y,(E-t»

ZifDown)

Figure 5.1: Scenario under consideration

CHAPTER 5. WORLD- VIEW IMAGE DATABASE 74

ar Velocity Profile

E

50

time(sec)

Heading Angle Profile

6000-

Traicctorv in the Inertial Frame

50

lime(sec)

100 4000 -2000 0 2000 4000

Y(feet)

Figure 5.2: Trajectory data

5.3 Scenario

The tracking scenario is illustrated in Figure 5.1. The global inertial coordi-

nate system is fixed on the flat earth, with positive x pointing to North, y

to East and z vertically down.

At t = 0 second, the tank is located at (6561.7,-328.1,0.0) feet or

(2000,-100,0) meters, traveling east with a speed of 20 mph. The subse-

quent states/maneuvers of the tank can be seen from Fig.l. The house is

located at (6561.7,262.5,0) ft and the tree at (6594.5,295.3,0) ft.

CHAPTER 5. WORLD-VIEW IMAGE DATABASE 75

The camera, fixed at (0.0,0.0,-16.4) ft, is 5 meters(16.4 ft) above the

ground and has a constant view angle of 9 degrees. The depth of the field

is determined by the hither and yon clipping planes of the camera. The

hither and yon clipping planes are 1 meter(3.3 ft) and 2500 meters (8202.1

ft), respectively, away from and in front of the camera.

5,4 Image Generation

A C program named tank has been written to do image rendering, tank

is built on top of the 3-D graphics library Dore(Dynamic Object Render-

ing Environment), tank has two interfaces with Dore: one for the dynamic

Tenderer, the other for the production renderer. The dynamic Tenderer can

achieve near real-time response, but requires special-purpose graphics hard-

ware. As a result, the dynamic renderer interface of tank only runs on the

Stardent machine. The production renderer, on the hand, relys on the soft-

ware for .scene rendering, and can run both on a Sun and Stardent machine,

provided the Dore library is available.

The images were generated with the aid of Dore on Stardent 3000(titan

P3) machine. Titan P3 is a supermini graphics computer. It has 1280 x 1024

color display which supports double buffering and 24-bit-per-pixel image.

Because of the hardware problem, the dynamic renderer could not be run in

multi-user mode. As a result, the ray-tracer was used to generate the images.

At the time of image generation, the machine's configuration was 3 cpus with

256MB RAM.

Since it was expected that the resulting images would also be displayed

on a Sun workstation, which typically has a screen size of 1152 x 900 pixels,

the dimension of the images was chosen to be 900 x 900 pixels.

tank's production renderer takes the trajectory data as input and gen-

erates a frame of image for each sampling instant. The trajectory data were

CHAPTERS. WORLD-VIEW IMAGE DATABASE 76

sampled at the .1 second from 0"second to \Q0th second inclusive. 1001

images were generated after 64 hours(38-hour cpu time) of running at the

highest elevated user priority.

The images generated by the Dore production Tenderer are in Dore raster

file format and had 24 bits per pixel, with each RGB channel having 8 bits.

A 900 x 900 image in Dore rasterfile format takes about 2.43 MB disk space.

This means that the total images would consume 2.43 GB(2430 MB) disk

space, which is prohibitively expensive and unfeasible. For this reason, at

the run time, each Dore raster image was converted to triff format image

and a color compression code was introduced, which compressed the 24-

bit-per-pixel image to 8 bits per pixel. This resulted in a reduction of 2/3

disk storage, and only 810 MB storage was needed. The 8-bit images were

further compressed using unix file compressing utility compress(l), resulting

in about another 95% compression. The images are finally in 8-bit viff format,

stored as *.Z files, which consume only 4 MB of disk space. Compared

to 2430 MB storage originally required, this is a very significant reduction.

The whole conversion process is automatically done by the image-generation

program if the command line option u-c" to the program is specified.

5.5 I/O File Specification

5.5.1 Command Line Options

Synopsis

tank [-x xstart] [-y ystart] [-W width'] [-H height] [-procs processors]

[-dt devicetype] [-i datafile] [-o imgfileimgfile] [-debug] [z] [-track]

[-help]

CatöTERS. WORLD-VIEW IMAGE DATABASE 77
* j., ■•**'■••

Options

-x xstari Optional argument. It specifies the horizontal position in pixels of

the upper left corner of the Dore window relative to upper left corner

of the root window. This option has effect only for the dynamic Ten-

derer running under the windowing environment and will be ignored

the image is written to a file.

Default: 0

Example: -x 20

-y ystari Optional argument. It specifies the vertical position in pixels of

the upper left corner of the Dore window. This option has effect only

for dynamic Tenderer running under the windowing environment and

will be ignored the image is written to a file.

Default: 0

Example: -y 20

-W width Optional argument. Specifies the width in pixels for the Dore

window. In the case that the image is written to a file, the image

width can be larger than the screen width.

Default: 128

Example: -W 512

-H h.o.ght Optional argument. Specifies the height in pixels for the Dore

window. In the case that the image is written to a file, the image

width can be larger than the screen height.

Default: 128

Example: -H 512

-procs processors Optional argument. Specifies the number of processors

to be used. The default is that only 1 CPU is going to be used(i.e.

CHAPTERS. WORLD-VIEW IMAGE DATABASE 78

processors takes the value of 0). The value of 1 tells Dore to run in a

multiprocessor mode, but only with one processor. This mode is usually

used for debugging purpose and is less efficient than specifying 0(true

uniprocessor operation). In the case that the number of processors

specified are more than that of machine's actual configuration, the

actual number of CPUs will be used.

Default: 0

Example: -procs 2

-dt devicetype Optional argument. Specifies the type of rendering devices

to be used, devicetype can only be one of the following strings:

• ardentxll A dynamic XI1 window device will be used. This op-

tion is valid only if the underlying hardware supports the dynamic

Tenderer.

• rasterf ile The production Tenderer will be used and the output

of the image is written to a disk file.

• seq_rasterf ile. The production Tenderer will still be used but

a sequence of image files will be produced. In this case the corre-

sponding output data file must be specified. See below.

Default: ardentxll

Example: -dt seq_rasterf ile

-i datafile Optional argument. Specifies the input data file which contains

the states of the tank. The position and orientation information will

be used to position the tank in the image. The velocity information

will be used, together with the camera's state, to compute the range

rate, which will be output to the description file.

Since right now the camera is fixed, the input data file only contains the

state information about the tank, while the camera's state information

CHAPTER 5. WORLD-VIEW IMAGE DATABASE 79

is hard-coded in the program. This relieves the burden of inputting

data about camera's state information. The input data file consists of

data records of the following form:

t xi yi zi xi yi Z'I R S T R S T

where x/, y/, zjy x'/, t/7, 2/ denote the position and velocity components

of the tank at the instant t in global inertial coordinate system. Ä, 5,

7\ Ä, S, T refer to the Eulerian angles and their rates.

Default: dynamics.dat

Example: -i "Vdata/tank.dat

-o imgfile Optional argument. Specifies the filename for the output image.

This option should be specified only if the production Tenderer is used

and the output of the image is written to a disk file. This option also

depends on the specification of u-dt devicetype".

• If u-dt rasterf ile" is specified, the default file name for the

image is tank.img.

• If u-dt seq_rasterf ile" is specified, this option must be speci-

fied and take the following format:

-o ssceneNumber. imgimageNumber

For example, if u-o sl.imglO" is specified, a sequence of image

files will be produced: sl.imgOOlO, sl.imgOOll, sl.img0012, ...

depending the number of data records contained in the input data

file datafile. In this case the default is si. imgO.

-c Optional argument. This option should be specified only if the produc-

tion Tenderer is used and the output of the image is written to a disk

file. If this option is specified, the output Dore raster image file will

be converted to triff image format and the resulting viff image is com-

CHAPTERS. WORLD-VIEW IMAGE DATABASE 80

pressed from 24-bits-per pixel to 8 bits per pixel. This viff byte image

is further compressed using compress (1).

-debug Optional argument. If specified, tank will print out some debugging

information.

-track Optional argument. This option is valid only if a XI1 dynamic device

is used. If the dynamic Tenderer is used and this option is specified,

a primitive tracker will be started and communication between the

tracker and the camera is established via BSD sockets. This way the

target will be always locked at the center of camera view.

-help Optional argument. When this argument is specified, tank prints out

a brief help message and exits gracefully.

5.5.2 Input Data File

The input data file to the image generation program contains the complete

state information about the tank and the camera at the sampling instants.

Since right now the camera is fixed, the input data file only contains the

state information about the tank, while the camera's state information is

hard-coded in the program. This relieves the burden of inputting data about

camera's state information. The input data file consists of data records of

the following form:

t zi yi zi xi yi zj R S T R S T

where x/, $//, z/, x/, y/, Z'I denote the position and velocity components of

the tank at the instant t in global inertial coordinate system. Ä, 5, T, Ä, 5,

T refer to the Eulerian angles and their rates.

Note that program can handle the input data file quite flexibly. The

input data record can be written almost any way the user wants, as long

as there is the right number of data fields and those fields are separated

CHAPTERS. WORLD-VIEW IMAGE DATABASE 81

by white space character$(space, tab, newline character(s)). A typical input

data record can take, for example, the following form:

t

xi yi zi

*f VI *i

R S T

R S t

5.5.3 Output Description File

The output of the program consists of two parts: a single description file and

a temporal sequence of raster image files. The description file and those image

files constitute the image database. All the files reside in the same directory.

The primary image file retrieving tool is ».camera, which is described in

Section 4.3. The more sophisticated image database management is left for

the future development.

The description file will be described in this section and the raster image

files in next section.

The quantities in the description file are in SI units(i.e. length in meters,

time in seconds, mass in kilograms, angle in radians) unless explicitly stated

otherwise. The description file contains the following information:

• time at which the image is to be generated. This is identified by a a

keyword—value" pair, with the keyword being time.

• the image identifier which maps to the corresponding image file. This is

identified by a u keyword=value" pair, with the keyword being image.

• the image width in number of pixels. This is identified by a * key-

word=valuer> pair, with the keyword being width.

CHAPTERS. WORLD-VIEW IMAGE DATABASE 82

• the image height in number of pixels. This is identified by a u key-

word=value" pair, with the keyword being height.

• the tank's state at that instant which includes

t xi yi zi x'j yi ii R S T R S t

• the camera's state which includes

*c/ Vd Zd x'd y'd z'ci Rc Sc Tc Rc Sc tc

fov fov hither yon yon

where xc/, yc/, zc\, i'cj, y'ci, z'ci denote the position and velocity compo-

nents of the camera at the instant in global inertia! coordinate system.

Rc, Sc, Tc, Rc, Sc, Tc refer to the yaw, pitch , roll angles and their rates.

fov and fov refer to the field of view(in degrees) and its time rate of

change(in degrees per second), respectively; hither, hither denote the

position of the front clipping plane and its rate in the camera coordi-

nate system; yon, yon position of the back clipping plane and its rate in

the camera coordinate system. The camera coordinate system is such

that its initial orientation aligns with the inertial coordinate system,

and the camera is always looking towards the negative z direction of

the body-fixed right-handed coordinate system.

• range of the target to camera and range rate.

A typical data record in the output description file may look like this:

time«0.500000 image=sl.imgOOOS vidth*900 height»900

2000.000000 -95.388000 0.000000 0.044456 9.504300 0.000000

1.566100 0.000000 0.000000 0.006405 0.000000 0.000000

0.000000 0.000000 -5.000000 0.000000 0.000000 0.000000

CHAPTERS, WORLD-VIEW IMAGE DATABASE 83

0.000000 -0.002778 0.000000 0.000000 0.000000 0.000000

9.000000 0.000000 -1.000000 0.000000 -2500.000000 0.000000

2002.279668 -0.816753

5.5.4 Image Files

Image Data Format

The images in the database are in Khoros viff image format. For detailed

information about viff image file format, please refer to the Khoros Reference

Manual.

Image File Name

The image file names have the following format:

sN.imgXXXX

For example, sl.imgOOOO, sl.ingOOOl, sl.img0002, ..., sl.imglOOO. si

stands for scene 1; imgOOOl corresponds to the image at .Ith second, iag0002

at .2th second, ..., imglOOO at lOOi/i second.

Chapter 6

Conclusions

6.1 Summary of Achievements

With the very limited resources, we have successfully established the non-

real time simulation capability for the passive, optically-based hierarchical

tracking system. The achievements include:

• An image generation tool, which allows us to generate the temporal

sequence of images of different scenarios.

• An image database and image retrieval tool(w_camera). The scenario

for the established image database is simple, yet possesses the com-

plexity to test the HiTert system against a real environment.

• An image processor, which segments the images and outputs target

centroid position information.

• A tracker, which performs the optimal estimation of the target states.

• A predictor, which attempts to predict the future position of the target,

based on the 3tate estimation results from the tracker.

• An error analysis module, which can compute the dartboard errors in

addition to computing the error statistics for the tracking system.

84

CHAPTER 6. CONCLUSIONS 85

• An instrumentation module, which displays the status of the HiTert

system during its operation. More specifically, this instrumentation

module can display the world-view image, tracking camera image, seg-

mented image, projectile hit points, trajectories, and error analysis

results.

• A set of file-based IPC protocols and a generic subsystem, which con-

sists of the world-view image database, tracking camera, image proces-

sor, tracker, predictor, error analysis and displaying/control module.

With such a testbed, we can plug in a different image processor, tracker or

predictor with minimum efforts to study the different image processing and

tracking algorithms. This generic subsystem lays the foundation upon which

we can build multi-level tracking system and further study various aspects

of the HiTert system.

The non-real time simulation allows the pre-generation of raw images and

pre-segmentation of those imageries. It also the allows the separate study for

image processing and tracking algorithms. These achievements realize the

hierarchical target tracking system proposed in 1989.

6.2 Future Research

This research on the Hierarchical Target Extraction, Recognition and Track-

ing System is inherently multi-disciplinary in nature and covers diverse ac-

tive research fields. We have built a prototype for the HiTert system. More

in-depth study is needed in further exploring the multi-disciplinary environ-

ment existing at Purdue. Many problems need to be addressed in the full

implementation of the HiTert system. These problems include:

• Battle field scene simulation:

— Terrain rendering for the rough surface.

CHAPTER 6. CONCLUSIONS 86

- Target motion-blur simulation.

- Environment simulation.

• Image database management.

• Image Processing: Extraction of the target orientation information.

• Tracking: More advanced tracker need to be developed

— Utilization of elevation data from a digital terrain map.

— Utilization of orientation information

• Coordination of the subsystems.

Appendix A

a-/?-7 Tracker Design

A.l Introduction

The classical problem of the fire control system is the accurate prediction of

the future position of a target at the time of the projectile intercept. Once the

future position of the target has been obtained, the corresponding gun point-

ing lead-angles can be determined. Current approaches to the solution of this

problem typically consists of two parts: estimation and prediction[12, 13].

Kaiman filtering techniques are employed to estimate the velocity and accel-

eration of the target based on the noisy measurements of the target positions.

Based upon the estimate for the velocity and acceleration, a prediction of the

future position of the target can be ascertained.

One of the key issues in the modeling of the target dynamics has been

how to model the target acceleration[12, 13, 14, 15, 16]. Singer[12] used

the temporally exponentially correlated acceleration model, viewing the ac-

celerations as the perturbations to the constant velocity trajectory. Berg[13]

proposed the addition of the acceleration correction term to the Singer model,

which represents an adaptive estimate of the mean target jerk(time rate of

the change of the target acceleration). Kendrick et al.[14] suggested to use

the orientation measurements to improve the estimate of the air-borne target

87

APPENDIX A. a-0-7 TRACKER DESIGN 88

acceleration. Andrisani et al.[15, 16] further extended the idea of incorpora-

tion of orientation measurements into the trackers by developing nonlinear

dynamic models of fixed-wing aircraft and helicopters for extended Kaiman

filters[19].

Thus far, the ground vehicle tracking remains to be an open research

area. Because of the resource constraints, however, it is not our intent to

address advanced trackers for the ground vehicles here. Instead, a simple non-

adaptive a-ß'*f tracker will be developed for the prototype HiTert system.

A.2 Target State Estimator Equation

A.2.1 State Equation

In a single physical dimension, the target state equations may be represented

by

x = Fx 4- Gw (A.1)

where

x =
" X, [010" ro]

ii , F = 0 0 1 ,G = Ö

. *• - 0 0 0 m 1.

x is the target state vector; jt, it and i, are the inertial position, velocity and

acceleration in ith component of the inertial Cartesian coordinate system. A

is the system matrix, B the input vector; w is the zero-mean white noise

process with intensity Q. It is assumed that the target jerking term as

modelled by the white noise intensity Q is the same in each inertial Cartesian

coordinate. Also assumed is that the exogenous white noise process in each

dimension is independent of or uncorrelated with each other.

APPENDIX A. a-ß-7 TRACKER DESIGN 89

A.2.2 Measurement Equation

A single passive optical sensor can only yield the bearing angles or addition-

ally bearing angle rates. The absence of range measurements will lead to

the lack of observability in certain scenarios[17]. To remedy this, one may

assume availability of either the range measurements or another passive op-

tical sensor to triangulate the target. For now, we assume for simplicity that

the position measurements are available indirectly via the transformation of

the measurement data. Also the measurements are discrete in nature and are

available at the sampling instants. With these assumptions the measurement

equation can be written as

z{k) = Cx(k) + v(k) (A.2)

where z is the measured position of a single dimension of the inertial cartesian

coordinate systems, x the state vector, t; the zero-mean white noise process

with intensity R; C is the measurement vector and has the following value:

C= [1 0 0]

A.2.3 Discretization

Let T denote the sampling period. It is well known[20, 21] that the solution

to the linear time invariant state equation (A.l) is

rt+T
x(t + T) = enx{t) + j eFl'+T-T>Gw(T)dT

= t^xit) + / eF<TGw(t + T - a)da (A.3)
Jo

Since
r° i 0 1

0 0 1
0 0 0

APPENDIX A. a-0-7 TRACKER DESIGN 90

is in Jordan form, A is oilpotent. It is easy to see that

e"-
' 1 t t2/2

0 1 t
0 0 1

(A.4)

Alsc note that under the zero-order hold approximation,

W(t + T - <T) a 10(«) for0<<7<T

Therefore

(A.5)

/ eF*Gu;(< + P - <r)<f<7 = /
Jo Jo

1 <r (TV2

0 1 <r
0 0 1

T3/6

r o
0
i

w(t)dc

T2/2
T

w(t) (A.6)

Finally, combining the Equations (A.3)-(A.6) gives, with the slight abuse of

the notations, the state equation can be written as

x(ik + l) = Ax(k) + Bw(k) (A.7)

where

A =
i T T2/2] r r3/6
0 I T , £ = r2/2
0 0 1 T

Using the observability test(20, 21], it is easy to see that the {C, A} in Equa-

tions (A.2) and (A.7) form an observable pair.

A.3 Target State Estimator Gains

Kaiman filter provides the optimal solution in the sense of minimizing the

mean square estimation error. In general, it can also be easily implemented.

APPtSNDDCA. a-ß-*y TRACKER DESIGN 91

The Kaiman filter state equations are[21]

x(ifc + l) = Ax(k) (A.8)

x(k) = x(k) + L(k)[y(k) - Cx-(k)] (A.9)

where

L(k) = M(k)CT(CM{k)CT + R)~l (A.10)

P(k) ± E{[x(k)~x(k)][z(k)-z(k))T}

= M{k) - M{k)CT(CM(k)CT + R)'lCM{k) (A.ll)

M(Jb + l) = E{[x(k + \)-x(k+l)][x(k + \)-x(k + l)]T}

= AP{k)AT + BQBT (A.12)

Af(0) = £{x(0)xT(0)} (A.13)

The steady-state Kaiman filter gain is given by

L = MCT{CMCT + Rrl

M = A(M-MCT(CMCT + RflCM)AT + BQBT

It should be noted that the state estimator governed by Equations (A.8)

and (A.9) is also known as the current estimator[2l] because the estimate

of x(k) uses the measurements up to and including those at k. However,

the image based measurement process is time-consuming compared to the

sampling period T. Thus, it is not realistic assuming the measurement y(k) is

available for the estimation of x(k) . Therefore, the one-step ahead prediction

estimator should be used instead. Substituting (A.9) into (A.8) yields state

equation for the prediction estimator

x(k + 1) = Ax{k) + F(k)[y(k) - Cx{k)\ (A.14)

where

F(k) = AL(k) (A.15)

APPENDIX A. a-ß-7 TRACKER DESIGN 92

A.4 Predictor Equation

A simple second-order predictor is employed using the following equation

Pi(t + tp\t) = pi(t) + vt(t)tp + l-ax(t)t* (A.16)

where tp is the projectile time-of-flight, p,(<), Vi(t) and ä{(t) are the current

estimate for the position, velocity and the acceleration in the ith inertial

Cartesian coordinate, respectively. Implicit in the above prediction equa-

tion is the assumption that the target's linear velocity and acceleration are

constant during the time-of-flight interval.

The performance of a predictor is often evaluated in terms of the predic-

tion error. The performance metric used here is the average prediction error

distance, which is defined as

u = v(n(»-*)»+(y^+(»-i)i (A.17)

where (£, y, i) is the predicted position of the target, (x, y, z) the correspond-

ing exact position of the target, AT the number of the prediction data points.

A,5 Numerical Results

Taking the image processor capability into account, the measurement noise

covariance is assumed to have the value R = 0.1 m2. The white noise co-

variance Q modelling the target jerking is somehow arbitrary. In fact, Q is

a design parameter at our disposal. Figure A.l-a shows the RMS 2-second

prediction error t* vs. the ratio of Q/R. The suboptimal prediction occurs at

Q/R = 270. The corresponding optimal Kaiman filter gain is 0.5057, 1.1352

and 1.2755. Figure A.l-b shows the parametric behavior of the prediction

error £<* vs. the prediction lead time tp, when the design parameter Q/P

varies. For comparison, Figure A.2 shows the RMS prediction error for an

APPENDIX A. a-ß-f TRACKER DESIGN 93

28J

27 J - —

MJ ■

:*U

(a) Influence of Q/Ä(*p = 2 second)

(b) Parametric behavior

Figure A.l: a-ß-y tracker RMS prediction error

APPENDIX A. a-ß-f TRACKER DESIGN n

10*

25.2

2-5

2-3.0

! ! l!!!|!| ! ! IM!!!! ! ! ![|||l! 1 1 [I11H j 1 1 ' 1 :'l! 1 . ■ • f • .- i i j MM 1 | !]hi!

1; Mliill j | ! ' : UHU ! i [11! f 1

\\ \ Mii|i i i i i - : Fliffli 1 1 lil»l
23 £ ~ ftittii

. ... ^ jylljll TMiiii
■ fTtytni 1 l \i • [| 11 ! ! hjr i : üliili

| U-2 ! |[t(t)| "IM :T.:r ': YTitflli fTrnif
1 " i frftiiiii Ml - M itl'Üli I i MüH

24J T~] XiTHlT rjiTW Mljp" "JMNl'
24.6

i i 1 \J i!!

i ■ ! j, .<

—j'T'H'i'i'i
HA

7A3.
• 1 1 j 1 j.lh

^—^^g i'timtf
10«

V*

10' 10»

(a) Influence of Q/R(tp = 2 second)

b 9M ?o.03

L«Ri0J3

oyRüo

<XJ 1 U

(b) Parametric behavior

Figure A.2: a-ß tracker RMS prediction error

APPENDIX A. a-ß^f TRACKER DESIGN 95
- ^4

■AS

I
I
i .

IJ

OJ ■

...4-.
i

±_ i=r
5ÜÜ 01:1

Figure A.3: a-ß tracker RMS estimation error (£p = 0 second)

a-ß tracker. It can be seen from the plots that the suboptimal a-ß tracker

can achieve the approximately same performance as the the suboptimal a-

/?-7 tracker. This is mainly because the non-adaptive nature of the trackers,

which are employed for the state estimation for the whole time history of the

trajectory consisting of the various segments of different maneuvers. How-

ever, it should be noted that the behavior of the prediction error versus Q/R

may not be the same as the state estimation error versus Q/R. Figure A.3

show the a-ß tracker RMS estimation error(ip = 0 second) versus the ratio

Q/R. Note that Figure A.3-a and Figure A.3 has the different abscissa scale.

A.6 Conclusions

A simple a-ß-*f tracker/predictor has been designed to minimize the predic-

tion error. Comparison shows that the a~ß-*f tracker and a-ß tracker can

achieve the approximately same performance. This suggest that advanced

tracker design method need to be studied and the ground vehicle tracking

still remains to be an open research area.

Appendix B

Dartboard Analysis

While the prediction errors in each inertial Cartesian components are good

metrics of the performance of a tracking system, it is often desirable to have

the tracking results graphically displayed in a form suitable for human con-

sumption. This is particularly important for the operator of a fire control

system. The dartboard analysis presented here mimics the fictitious target-

carried dartboard as seen by an observer.

B.l Definitions

Figure B.l is a schematic at an arbitrary instant /. Point P0 is the exact

position of the target at t, Point P the predicted position at Jl, O the location

of the observer. The up direction of the observer at the time t is specified by

the unit vector u.

The eye coordinate system Oxyz is determinated as follows: the positive

z direction is opposite to the vector OPQ, i.e.,

£=-öK/|öK| (B.l)
!The prediction was performed at (t — tp), where tp is the predict-ahead or lead time.

96

APPENDDC B. DARTBOARD ANALYSIS 97

Oj

'i

*

Figure B.l: Dartboard schematic

the x-axis is determined by

z = üxz (B.2)

and the y-axis completes the triad of the right-hand coordinate system:

y = z x x (B.3)

Note that the up direction is not necessarily perpendicular to the line

of sight(LOS) of the observer. The only requirements for the up direction

vector ü are that ü is in the "vertical" plane determined by the y and z axes

and that u has a positive component along the y axis.

The dartboard plane TT contains the point PQ and is perpendicular to

the vector OPQ. The x'-axis, y'-axis and z'-axis of the dartboard coordinate

system P0x'y'z' are parallel to the Ox, Oy and Oz axes, respectively.

APPENDIX B. DARTBOARD ANALYSIS 98

The hit point P' of a projectile is the intersection of the line OP and

the dart board plane ir. The vector P^P* is the perspective projection of the

prediction error vector P0P onto the dartboard plane x. The vector PQP'

is the dartboard error vector. Resolving the vector PQP* in the coordinate

system PQx'y'zf yields the dartboard error components1.

It should be pointed out that both the location and the orientation of

the dartboard plane ir change with the time. The location and up direction

of the observer also change with the time if the observer is traveling with

a moving vehicle. However, in computing the dartboard error vector PP\

it is assumed that the observer and the dartboard are fixed during the time

interval that it takes for a projectile to travel from P to P'.

B.2 The Hit Point

We shall derive the vector equation for finding the hit point Pf. In the

following, we use an arrow above a single upper case letter to denote the

position vector for the corresponding point. All the position vectors have the

common starting point, say, 0/, which is the origin of the inertial reference

frame.

Let v\ and v2 be the unit direction vectors for OPQ and OP, respectively.

The vector form equation for the line OP is given by

P = Ö + pv* (B.4)

where P is the position vector of an arbitrary point P on the line, p a real

scalar quantity2, O the position vector of the point O.

The vector form equation for the dartboard plane TT is

(P - P0) • < = 0 (B.5)
lThe error component in the z' axis is always zero
2The absolute value of p is the distance between the points P and O.

APPENDIX B. DARTBOARD ANALYSIS 99

where P is the position vector of an arbitrary point P on the plane, P0 the

position vector of the point PQ. Substituting Equation B.4 into B.5 gives

(Ö + pv2-Po)-v\ =0 (B.6)

Solving Equation B.6 for p yields

Vi • v2

Substituting p back into Equation B.4 gives the hit point P'

P> = Ö + ((PoZÖl'*)* (B.8)
Vi • v2

The solution for the position vector P' of the the hit point P' is independent

of any coordinates system, since vectors are coordinates system independent1.

B.3 Coordinate Transformation

The coordinates of the hit point position vector P' in Equation B.8 can

be most conveniently resolved in the inertial Cartesian coordinate system

Oix/yizi, as all the relevant vector quantities in the right hand side of Equa-

tion B.8 are usually expressed in the inertial coordinate system. Given the

inertial coordinates of these vectors, finding the coordinates for the position

vector P' is quite trivial.

However, to find out the dartboard errors, the inertial coordinates for P'

must be transformed into the the dartboard coordinate system Pox'y'z*. This

transformation can be done in the two steps: translation and then rotation.

First, the inertial coordinate system O/X/y/27 need to be translated to

the origin PQ of the dartboard coordinate system. The application of this

1 All the position vectors, however, have the same reference point.

APPENDIX B. DARTBOARD ANALYSIS 100

translation transformation to the hit point P* effectively yields the dartboard

error vector PQP*', where

P~P' = P'- P0 (B.9)

Next, we need to apply the rotation transformation to tne dartboard

error vector PQP*. Since the dartboard coordinate system has the same orien-

tation as the eye coordinate system Oxyz, we can use the direction matrix

of the coordinate system Oxyz relative to the inertial coordinate system

Ö/X/J//2/. The direction cosine matrix which transforms from Ojx/j//z/ to

Oxyz is given by

Xl X2 X3 '

Vx V2 3/3
Z\ Z2 *3 .

(B.10)

where X\, x2 and x3 are the components of the unit vector x in the inertial

xj, yj and z/ directions, respectively. Similar remarks apply to y\, y2> 2/3, Z\y

zi and Z3. The unit vectors x, y and z of the eye coordinate system Oxyz

are given by Equations B.l ~ B.3.

Concatenating the translation and rotation, we have the dartboard error

components x', y' and z' given by

(B.ll)
X\ X-i x3 "

y\ V2 V3 (PoFh
Z\ 2J *3 . . (ftn .

where (PQP*)X (P0P')2 and {PoP')3 are the inertial components of the databoard

error vector PQP* in the x;, y\ and Z[directions, respectively.

Appendix C

Geometrical Transformation

C.l Introduction

Geometrical transformation is one of the core parts of 3-dimensional com-

puter graphics. In addition to its importance in the modelling and render-

ing object hierarchies, geometrical transformation is also an integral part of

the image-based tracking system. For example, given a world coordinate

(lu,,!/«;,^) what is the corresponding point in the image ? Conversely, given

a screen coordinate (i3,y3) what is the corresponding line-of-sight(LOS) in

the world ? To answer these questions, a series of geometrical transforma-

tions must be performed to yield the solution.

A thorough discussion of the subject is beyond the scope. We shall

outline the highlights of the geometrical transformation by deriving or sum-

marizing the key formulas from an engineering point of view, leaving aside

other graphics issues such as clipping, hidden surface removal and lighting

models. Interested readers may refer to Foley et. el.[9] or Newman et. el.[10].

Since the images are generated with the aid of 3D graphics system

Dorefll], discussions will follow Dore conventions when necessary.

101

APPENDIX C. GEOMETRICAL TRANSFORMATION 102

C.2 Viewing Transformation

C.2.1 World to Eye Coordinate Transformations

In order to simplify the transformations of world coordinates into the graph-

ical output device coordinates, the world coordinates are first transformed

into the eye coordinates system. The eye coordinate system relative to the

Figure C.l: World to eye coordinate transformation

world coordinate system is completely determined by the location and ori-

entation of the eye coordinate system. The eye point or the location of the

camera is given by the position E(EX, Ev, Ez) (See Figure C.l). Suppose

that the camera is looking at P0(the center of interest). To be consistent with

Dore 3D graphics system, which is used to generate the world view images

of a simply battle field scene, the positive direction of the zc axis is opposite

to the camera boresight. Also assume that the up direction of the camera is

APPENDIX C. GEOMETRICAL TRANSFORMATION 103

given by the unit vector u1. The orientation or the unit vectors /, rh and n

of the camera coordinate system are then given as follows:

M (C.l)

(C.2)

(C.3)

A column vector will be used to represent the coordinates of a point.

The direction cosine matrix, which transforms the world coordinates of a

fixed point into the eye or camera coordinates, is given by

74

\EP0\

I = u x n

m = n x I

R =
/x ly h

mx my mz

nx Tly nz

(C.4)

where /r, ly and lz are the components of the unit vector / of the xc axis

along the world xw, yw and zw axes, respectively. Similar remarks apply to

m and n.

The transformation from the world to eye coordinates consists of two

steps: translation and rotation. Under the homogeneous coordinates[9, 10],

the associated matrices are:

MT{EXJEy,EM) =

MR =

r l 0 0- Ex

.) =
0
0

1 0 -Ey
0 1 -Ez

.0 0 0 1

lr '• /, 0 1
mx my mz 0
nx ny nz 0
0 0 0 1

(C.5)

(C.6)

lu'is not necessarily the same as the "up" direction of the world. The only requirement
for u is that u lies in the half plane determined by the zc axis and the postttve yc axis.

APPENDIX C. GEOMETRICAL TRANSFORMATION 104

Concatenation of the two matrices, i.e. premultiplying MR with Afr,

yields

Mmi, =

/r <v /, -IE
mx TTly mt -m- E
nx ny riz -n-E
0 0 0 1

(C7)

C.2.2 Scaling Compensation

In order to avoid the nonuniform scaling in the horizontal and vertical di-

rections, the following scaling transformation is performed after the world to

eye transformation:
' sx

0
0
0

A/jca/e =

0

0
0

0 0
0 0
1 0
0 1

(C.8)

where

{
Sx

Sx

= height/width; sy = 1
= 1; sy = height/width

if width > height
if width <= height

width and height are the sizes of an image.

C.2.3 Perspective Transformation

In order to achieve the 3-D effects on a 2-D graphical output device, the

next step is to perform the perspective transformation in the eye coordinate

system. The 3D viewing frustum is determined by the field of viewing angle,

the hither and yon clipping plane(See Figure C.2 - a). In Dore, the camera

is located at the origin and looks towards the negative direction of the z-

axis of the camera coordinate system. Thus, the hither and yon planes must

be specified by the negative floating numbers h and y, respectively(|/i| <

|y|). In order to facilitate the clipping process, the viewing frustum is also

transformed ino the canonical viewing volume[9]. This canonical viewing

APPENDIX C. GEOMETRICAL TRANSFORMATION 105

volume extends evenly 2 units of distance in the x and y directions, and

extends in the negative z direction 1 unit of distance. See Figure C.2 - b.

The transformation which maps the hither and yon clipping planes into

the planes z = 0 and z = — 1 in addition to the perspective projection is

given by

M, perMp

tan*

0
0
0

0
1

tan*

0
0

0 0

0 0
1 -h

-1
i-Vv

0

(C.9)

It should be pointed out that this transformation is nonlinear: a line

will not, in general, be mapped into a line. A line-of-sight(LOS) originating

form the eye point will, however, be mapped into a line parallel to the z axis.

This observation is important. It plays an key role in the inverse process of

determining the LOS given the screen coordinates.

C.2.4 Screen Transformation

After the perspective projection and clipping, the fro utmost in the canonical

volume is mapped onto the physical 2D graphical output device. Let us

consider the case where the 2D graphical output device is an X window.

According to the convention in X, the upper left hand corner of the window

has the coordinates (0,0). The positive x, direction is from left to right,

while the positive direction for yM is vertically downward. See Figure C.3.

Consider the rectangular output area of width W and height H with its

centroid located at (xe,yc). The transformation which maps the normalized

2x2 screen to the above physical graphical output device is given by

Ma

W/2 0 0 xc

0 -H/2 0 yc

0 0 1 0
0 0 0 1

(CIO)

APPENDIX C. GEOMETRICAL TRANSFORMATION 106

field of view(a)

(a) Viewing frustum

(b) Canonical viewing volume

Figure C.2: Perspective transformation

APPENDIX C, GEOMETRICAL TRANSFORMATION 107

ye

Figure C.3: Screen transformation

C.2.5 Concatenation of Transformations

The overall world to screen transformation is the concatenation of above

series of transformations:

Mw2s = M*cr«nMper,pM,ca/eA/u,2c

Carrying out the matrix multiplications yields:

(C.ll)

A/t„2, =

alx — xcnx aly — xcny alz — xcnz — a(l • E) + xc(n • E)
bmx - ycnx bmy - ycny bmz - ycnz -6(m • E) + yc(n • E)

cnx

-nx

CTly

where

a =

6 =

c —

cnz

-nz

Wsx

2tanf
H$y

2tanf
1

i-A/y

-c[(n.£)-f h]
n-E

(C.12)

(C.13)

(C.14)

(C.15)

APPENDIX C. GEOMETRICAL TRANSFORMATION 108

C.3 Screen to World Transformations

Given the screen coordinates (x,, y,), it is insufficient to find the point in the

world coordinates system, as the depth value z$ is unknown. However, one

can find the LOS of the corresponding point in the world coordinate system.

As remarked in Section C.2.3, given the fixed xt, y,, the screen coordinates

(x,,y„2#) will yield the same LOS for any values — 1 < z9 < 0. With the

range information, one can determine the corresponding point in the world

coordinate system.

The inverse mapping from the screen to world coordinate is given by

= MzlM^M^Mzi^ (C.16)

where

M~l = Mfl(Ex,E„Ex)Mä 1

= MT(-EX,-EV,- E2)M
T

R

r 1 0 0 EX 1 r lr mx n. r 0

=
0 1 0 Ey

0 0 1 Ez

my

™z

n

n
v 0
, 0

.000 1 . 0 0 0 1

lx mx nx i 7 ■

= ly my riy i

lz mz nz i

.000

\ s-1 0 0

1

01
-

*CJ/e = 0 V 0
0 0 1
0 0 0

0
0
1 .

'tanf 0 0 0

A'1 A
J>CT$p =

0 tanf
0 0

0
0

0
-1

0 0 l-h/y 1
h

APPENDIX C. GEOMETRICAL TRANSFORMATION 109

A/, -l

w
0
0
0

£ o o

0
0

1
0

«Ax
£yc

o
l

Carrying out matrix multiplications yields

Mg2w =

where

ö/r bmx fEx clx + dmx - nr + e£x

a/y 6mv /£„ c/v -I- <fmy — ny + e£„
a/z 6mz /£, c/r -f cfm, - n, + e£,
0 0/ e

a = a"'=

6 = 6"' =

c — —ax.

2 a
 tan —
Wsx 2

2 a
tan —

ffs

e = -1/A

/ = c(i-Vy)

As a check, one can verify that the following holds:

Mw2sMt2w = Ma2\t>Mw2$ = /

(C.17)

(C.18)

(C.19)

(C.20)

(C.21)

(C.22)

(C.23)

Appendix D

Manual Pages

The manual pages, in the standard UNIX on-line man(l) page format, are

listed here for reference. These man pages are intended to be a quick reference

for the usage of the command line options. The specification of the file

formats are omitted.

If you have set your environment variable MANPATH appropriately, you

can access manual pages on-line by typing, for example,

example^ man hitert

110

DATACONTROL(l) UNIX Programmer's Manual DATACONTROL, I)

NAME

dataControl - Data Control module

SYNOPSIS

dataControl -imglnfo tmglnfoFilc -seglnfo seglnfoFxle

-tO start-time -te end-time -oimglnfo out-imglnfoFile -oseglnfo out-seglnfo File -traj out-ezact-traj
-spec out-spec

DESCRIPTION

dataControl takes the description files for the world view image database and the segmented image
database, respectively, as inputs. It outputs the selected segments of the description files, exact
trajectory data file and the spec file containing the information for the starting and terminating
point.

OPTIONS

-imglnfo imglnfo File Required argument. tmglnfoFtle is the name of the description file for
the world-view image database of the whole time history.

-seglnfo seglnfo File Required argument. seglnfoFile is the name of the description file for the
segmented image database of the whole time history.

-tO start-ttme Required argument, start-time specifies the time at which the tracking
system should start to run.

-te end-time Required argument, end-txme specifies the time at which the tracking system should
terminate. By specifying start-time and end-time, one can ask system to run over
the selected segment of the trajectory of interest instead of the whole time history.

-oimglnfo out-imglnfoFile Required argument. out-tmglnfoFile specifies the name of descrip-
tion file for the selected segment of the world-view image database.

-oseglnfo out-seglnfo File Required argument, out-seglnfo File specifies the name of description
file for the selected segment of the segmented image database.

-traj out-exact-traj Required argument, out-exact-traj specifies the name of file containing se-
lected segment of exact trajectory data.

-spec ouUspec Required argument, out-spec specifies the name of file containing information
corresponding to the starting and terminating points.

SEE ALSO

hitert(l)

AUTHORS

Jun Lu, Dominick Andrisani II, Purdue University School of Aeronautics and Astronautics

HiTert 14 September 1991 111

W_CAMERA(1) UNIX Programmers Manual W.CAMERA(l)

NAME

r.eamera - Return the sequence of user specified input files.

SYNOPSIS

w.camera [-dir directory] [-prefix prefix] [-num.width num-wtdth] [-suffix suffix] -inSpec tnSpec
outSpec outSpec [-img image-file] [-uc <1 or 0>] [-help]

DESCRIPTION

w.camera returns an desired input file according to the user specified directory, prefix, sequence
number, suffix. The sequence numbers are extracted from the inSpec file. The tnSpec file consists
of the sequence numbers, data records from the description file for the world-view image database
and data records from the description file for the segmented image database. The outSpec consists
of the sequence numbers, image file names, data records from the description file for the world-view
image database and data records from the description file for the segmented image database. If the
input filename has ".Z", it is assumed to be in the compressed format. The compressed input files
will be uncompressed to produce the output image file if the w-uc 1" option is specified, (this is also
the default). However, if "-uc 0" is specified and if the input files have the tag ".Zn, the compressed
image files will be copied to produce the output image files. In this case, the output image files are
tagged with W.Z" to indicate that they are compressed files.

No assumption has been made that the prefix, sequence and suffix are separated by the character
period *". If they are indeed separated by such a character, they should be explicitly specified
either in the prefix or suffix part.

OPTIONS

[-dir directory]

[-prefix prefix]

Optional argument. This option specifies the directory from which the input file
is to be picked up. It is an optional argument. Default: the current directory.

Optional argument. This option specifies the part in the input file name that
precedes the sequence number. It is an optional argument. Default: null.

[-num.width num-wtdth] Optional argument. The width that the numeric sequence takes may
be specified through this optional argument. If the num-wtdth is
greater than the number of the digits the sequence-number (as specified
in -num) has, the sequence-number will be prepended with zero's(O's)
so that the width of the sequence string will be the same as num-wtdth.
Default: the sequence string is as long as the the number of digits that
the sequence number has.

[-suffix suffix] Optional argument. The option specifies the part of the filename that follows the
sequence string. If the last two characters of the suffix string are ".Z", then the
input file will be assumed to in compressed format, and uncompressed data file
will be produced using uncompress(l). Default: null

•inSpec inSpec Required argument. tnSpec

specifies the name of a input specification file. This file is not actual output
"data or image" file; rather, it contains data records of the form: sequence-
number followed by a data record from the description file for the world-view
image database and a data record from the description file for the segmented

HiTert 15 September 1991 112

WXAMERA(l) UNIX Programmer's Manual W.CAMERA(l)

-outSpec oniSpec

['bug imgfile]

image database, which are separated by the white space characters(space, tab,
newiine).

Required argument. outSpec

specifies the name of a output specification file. This file is not actual output
"data or image" file; rather, it contains data records of the form: sequence-
number, followed by the file name for the corresponding output image, followed
by a data record from the description file for the world-view image database
and a data record from the description file for the segmented image database,
which are separated by the white space characters(spacel tab, newiine).

Optional argument, imgfile specifies the name of the output image files. If this
option is not specified, the default path name for tmgfile is /tmp/w.cam.SUSER,
where SUSER is expanded to the login name of the user. If more than one image
sequences are specified in the tnSpec, the output image files will have the names
imgfile[.Z], imgfilel[.Z], imgfiU2[.Z], ...

EXAMPLES

% w.camera-dir SHITERT.HOME/data/images/scenel \
-prefix sl.img-num.width 4 -suffix Z \
-inSpec inSpec -outSpec outSpec

SEE ALSO

hitert(l), vseqdir(l), Lcamera(l)

AUTHORS

Jun Lu, Dominick Andrisani II, Purdue University School of Aeronautics and Astronautics

HiTert 15 September 1991 113

TXAMERA(l) I" NIX Programmer's Manual T.CAMERA(1J

NAME

t_camera - Batch-mode tracking camera module in HiTert System

SYNOPSIS

t .camera -world world-spec -noise notse -o outSpec [-help]

DESCRIPTION

Lcamera , conceptually, takes world view image and tracking commands(where should camera look
at ?) and outputs the acquired image to the image processor for segmentation and to the instrumen-
tation module for displaying purpose. However, since in batch-mode imageries are presegmented,
tracking camera image to the image processor is not really needed. However, the image processor
need to know the tracking camera commands(where is camera looking at ?) in order to compare with
the presegmented image to output the appropriate overlapping area of the images. Also since the
the world view image is available to the instrumentation module, the instrumentation module may
display appropriate subimage according to the tracking camera commands. Therefore no tracking
camera image is really needed. For implementation efficiency, t.camera does not output images. It
merely make its its state information available to other down-stream modules.

OPTIONS

-world world-spec The world-spec contains the information about the time and the filename cor-
responding world-view image, as well as the data records from the description
file for the world-view image database and the data records from the descrip-
tion file for the segmented image database.

-noise noise Required argument. It specifies the name of the file containing three floating num-
bers representing white noise intensities for x, y and z directions respectively. The
exact target position as obtained from world-spec are perturbed with Gaussian ran-
dom values with their standard deviations determined by noise intensities, respec-
tively. The perturbed values are used to simulate where the actual tracking camera
is looking at. By changing the input noise intensities, one may mimic the tracking
cameras with different tracking accuracies.

-o outSpec Required argument. It specifies the name of the output spec file.

[-help] Lcamera will print out brief help message if this option is specified. Note this option is
designed to give a quick help to the user via unix command line option. It does not work
with cantata(l).

SEE ALSO

hitert(l), w.camera(l), xhitert(l)

AUTHORS

Jun Lu, Dominick Andrisani II, Purdue University School of Aeronautics and Astronautics

HiTert 15 September 1991 114

IPC(l) UNIX Programmer's Manual IPC(l)

NAME

ipc - Image Processor.

SYNOPSIS

ipc -imglnfo tmglnfoFtle -seglnfo seglnfo File -inSpec tnSpec

[-dir directory] [-prefix prefix] [-num_width num-wtdth] [-suffix suffix] -meas measurement -outSpec
outSpec [-img image-file] [-uc <1 or 0>] [-help]

DESCRIPTION

ipc computes the target centroid position according to segmentation results and range information
that are contained in tmglnfoFile and seglnfoFile. It also returns an desired output file according
to the user specified directory, prefix, sequence number, suffix. The sequence numbers are extracted
from the tnSpec file.

If suffix is ".Z", it is assumed that the corresponding input file is in the compressed format. The
corresponding output image Hies will be uncompressed or remain compressed depending on the
option specified for "-uc". If the output image file remain compressed, the output image files are
tagged with "Z" to indicate that they are compressed files.

No assumption has been made that the prefix, sequence and suffix are separated by the character
period ".". If they are indeed separated by such a character, they should be explicitly specified
either in the prefix or suffix part.

OPTIONS

-imglnfo imglnfoFtte Required argument. This option specifies the description file for the world-
view image database.

-seglnfo seglnfoFtle Required argument. This option specifies the description file for the seg-
mented image database.

-inSpec xnSpec

[-dir directory]

[-prefix prefix]

Required argument. This option specifies an input file to the program. This
input spec file comes from the output spec file of the tracking camera.

Optional argument. This option specifies the directory from which the input file
is to be picked up. It is an optional argument. Default: the current directory.

Optional argument. This option specifies the part in the input file name that
precedes the sequence number. It is an optional argument. Default: null.

(-num .width num-width]

[-suffix suffix]

Optional argument. The width that the numeric sequence takes may
be specified through this optional argument. If the num-wtdth is
greater than the number of the dtgtts the sequence-number (as specified
in -num) has, the sequence-number will be prepended with zero's(0*8)
so that the width of the sequence string will be the same as num-wtdth.
Default: the sequence string is as long as the the number of digits that
the sequence number has.

Optional argument. The option specifies the part of the filename that follows the
sequence string. If the last two characters of the suffix string are *.Zn, then the
input file will be assumed to in compressed format, and uncompressed data file
will be produced using uncompress(l). Default: null

HiTert 16 September 1991 115

IPC(l) I'NIX Programmer's Manual IPC(l)

-inSpec inSpec Required argument. mSpec

specifies the name of a input specification file. The mSpcc file has possibly several
data records, with each data record consisting of a sequence number, a filename
specifying the world-view image, the point(center of interest - COI) that the
tracking camera is looking at, the screen coordinates of COI in the world-view
image, a data record from the description file for the world-view image database
and a data record from the description file for the segmented image database, all
of which are separated by the white space characters(space, tab, newline).

-outSpec outSpec Required argument. outSpec

specifies the name of a output specification file. The outSpec has the same
number of data records as tnSpec file. But each data record in outSpec is
slightly different from that in inSpec. Each data record in outSpec consists
of the sequence numbers, the world-view image filename, the filename for the
segmented image, the point(center of interest - COI) that the tracking camera
is looking at, the screen coordinates of COI in the world-view image, the data
record from the description file for the world-view image database and data
records from the description file for the segmented image database, all which
are separated by the white space characters(space, tab, newline).

[-img imgfile] Optional argument, tmgfilc specifies the name of the output image files. If this
option is not specified, the default path name for imgfile is /tmp/ipImg,$USER,
where $USER is expanded to the login name of the user. If more than one image
sequences are specified in the inSpec, the output image files will have the narrt»
imgfile[.2]t imgfilei[.Z], imgfilc2[.Z], ...

[-uc <1 or 0>] Optional argument. This boolean flag specifies whether or not to uncompress
the input file(s) specified. If suffix is ".Z", it is assumed that the corresponding
input file is in the compressed format. It will be uncompressed to produce the
output image file if the "-uc 1" option is specified, (this is also the default).
However, if "-uc 0n is specified and if the input files have the tag n.Zw, the
compressed image files will be copied to produce the output image files. In
this case, the output image files are tagged with ".Z" to indicate that they are
compressed files. This option has no effect if the input file has no tag ".Z".

EXAMPLES

% ipc -imglnfo ../dataControl/imginfo \
-seglnfo ../dataControl/seginfo-inSpec inSpec \
-dir SHITERTJBOME/data/images/secnel_seg \
-prefix sl.seg -num.width 4 -suffix .Z \
-meas measurement -outSpec outSpec

SEE ALSO

hitert(l), vseqdir(l), w_camera(l)

AUTHORS

Jun Lu, Dominick Andrisani II, Purdue University School of Aeronautics and Astronautics

HiTert 16 September 1991 116

TRACK(I) l'MX Programmers Manual TRACK(l)

NAME

track - An alpha-beta-gamma tracker

SYNOPSIS

track -ip ip.data -ic tc.file -o out-filename

DESCRIPTION

track takes noise-contaminated measurement data as input and gives the optimal estimation of the
state using Kaiman filter theory.

OPTIONS

-ip ip.data Required argument, ip.data is the name of the file which contains the measurement
data as obtained from the image segmentation. The measurement data file consists
of the data records of the form:

t x-measure y-measure z-measurc

[-ic ic.file] Optional argument, ic.file is the name of the file which contains initial conditions for
the tracker. It has the following data items, ail of which are separated by the white
space characters.

-ic ic-filc Optional argument. The ic-filt contains the initial conditions for the states of the
tracker. It consists of the following data:

t0xxxyyyzzz

where x, x, x, y, y, y, i, £ and i are the initial conditions at the starting time to- If
this option is not specified, track will set x, x, x, y, y, y i, £ and £ all to zeros as the
default values for the initial conditions.

-o out-filename Required argument, out-filename is the name of the file which contains optimal
state estimations. It consists of the data records of the form:

txxxyyyzzz

where x , x, x, y, y, y f, z, z are the estimated states at the time C.

SEE ALSO

hitert(l), predict(l), xhitert(l)

AUTHORS

Jun Lu, Dominick Andrisani II, Purdue University School of Aeronautics and Astronautics

HiTert 17 September 1991 117

PREDICT(l) UNIX Programmer's Manual PREDICT(l)

NAME

predict - The alpha-beta-gamma tracker

SYNOPSIS

predict -i in-filename [-tp sec] -o out-filename

DESCRIPTION

predict performs sec ahead prediction based on the state estimation from the alpha-beta-gamma
tracker.

OPTIONS

-i in-filename Required argument, in-filename is the name of the file which contains the state
estimation of the alpha-beta-gamma tracker, the "best" estimation about the tar-
get's position, velocity and acceleration. It consists of the data records of the
form:

txxxyyyzzz

where x, x and x are the position, speed and acceleration of the target at time (o^*
has the unit of seconds; whereas £, x and x have units of meters, meters /seconds'
and meters/(seconds) , respectively. Similar remarks apply to y, y, y, zt z and i,
respectively. These data are separated by one or more mixed white space charac-
ters.

[-tp sec] Optional argument, sec is the expected time of flight of a projectile intercepting the
target.

-o out-filename Required argument, out-filename is the name of the file which contains predicted
target position. It consists of the data records of the form;

t tj x(tf\t) y(tj\t) z(tj\t)

where t is the current time, tj the future time(tf = t + <p), x(tf\t), y(tj\t) and
z(tj\t) the predicted target position coordinates at tj based on the current state
estimates at t.

SEE ALSO

hitert(l), track(l)

AUTHORS

Jun Lu, Dominick Andrisani II, Purdue University School of Aeronautics and Astronautics

HiTert 18 September 1991 118

ERRANALY(l) UNIX Programmer's Manual ERRANALY(l)

NAME

errAnaly - Performs error analysis for the tracking system.

SYNOPSIS

errAnaly -pred prtdfile -exact exactfile

[-showErr <1 or 0>] -outSpec outSpec [-outErr outErr] [-help]

DESCRIPTION

errAnaly computes error metrics for the tracking system, using the prediction data and exact data.

OPTIONS

-pred predfile Required argument. It specifies the file that contains the prediction data from the
predictor.

-exact exactfile Required argument. It specifies the file that contains the exact data for compar-
ison.

•showDart showDari Optional argument. If showDart is 0, errAnaly will compute the intt6

tial component errors and write these errors to a data file(see option "-■
outErr outErr"). If showDart is 1, errAnaly will compute the dartborad
errors and write these errors to a data file(see option "-outErr outErr"1).
These error data are intended main for graphical displaying purpose. The
statistics are are always computed based on the inertial component errors.
Default: 1

-tbf tbf Optional argument, tbf is track-before-fire time in seconds. Default: 0

-tburst tburst Optional argument, tburst is the burst interval in seconds. Default: from starting
point to the terminating point.
Example: -showDart 0

-outSpec outSpec Required argument. It specifies the name of the file that contains the output
c file, which contains statistics of the errors and the filename of the actual
error data file.

-outErr outErr Optional argument. outErr specifies the name of the file which contains the
actual error data. Default: /tmp/errAnaly.login

SEE ALSO

hitert(l), predict(l), xhitert(l)
■

AUTHORS

Jun Lu, Dominick Andrisani II, Purdue University School of Aeronautics and Astronautics

HiTert 18 September 1991 119

XHITERT(t) UNIX Programmers Manual XHITERT(l)

NAME

xhitert - Instrumentation/display module for the HiTert System

SYNOPSIS

xhitert -world world -camera camerastate -ip tp.outfile -pred prtdictor.data --exact ezacLtrajectory
[-display display]

DESCTIPTION

xhitert is a program which runs under X window system. It graphically displays the run-time status
of the HiTert system. Graphically, xhitert has the following components in its top level window:

an image of a world view.

an image as seen by the tracking camera.

an image segmented by the image processor.

a dart-board, which displays the prediction errors.

exact trajectory and the predicted trajectory,

tabulated numerical results of the error analysis.

Functionally, xhitert take the inputs from the "camera", which provides the world view image and the~
state of the tracking camera so that the xhitert can find, from the world view image, the subimage
corresponding to the tracking camera. It also takes as its input the segmented from the image
processor and displays all the input images. Besides, xhitert takes as its inputs the tracker/predictor
results, performing error analysis, mimicking dart-board and display exact and predicted trajectories.

This version is designed to work in the batch-mode of the HiTert system.

OPTIONS

-world world Required argument. It specifies the ASCII file which contains the image-sequence-
number followed by the world-view-image filename, image-sequence-number is
used to carry the time information that the image corresponds to. time and
filename are separated by white space character(s).

-camera camera Required argument. It specifies the ASCII file which contains the tracking camera
state.

-ip tp Required argument. It specifies the ASCII file which contains the measurement
as segmented by the image processor.

-pred predicteiLrtsutts Required argument. It specifies the file which contain the prediction results.

-exact exact Required argument. It specifies the file which contains the exact trajectory data.

-display host.diplay:screen Optional argument, which specifies where to display xhtterfs graphical
output.

-demo <0 or 1> Optional argument. This boolean flag specifies whether or not to display the
tracking results in a pseudo real-time mode. If demo is false, i.e., 0, all the
tracking results will be blasted to the screen almost at the same time; if demo is
In«, however, xhitert will be in the pseudo real-time mode, displaying the tracking
results one at a time.

HiTert Last Changes: June 1 1990 120

XHITERT(l) I'NIX Programmer's Manual XHITERrT(l)

-help Optional argument. When specified, xhttcrt will print out biref help message.

SEE ALSO

X(l)

AUTHORS

Jun Lu, Dominick Andrisani II, Purdue University School of Aeronautics and Astronautics

HiTert Last Changes: June 1 1990 121

Bibliography

[1] M. F. Tenorio and D. Andrisani II, A Hierachical Approach to Target

Recognition and Tracking, Research Proposal, Schools of Electrical and

Aerospace Engineering, Purdue University, West Lafayette, IN, 1989.

[2] D. Andrisani II, M. F. Tenorio, J. Lu and F. P. Kuhl "A Hierachical

Approach to Passive Robust Target Tracking," Proceedings of the Ninth

Meeting of the Coordinating Group on Modern Control, Picatinny Ar-

senal, N.J., Oct. 24-25 1989.

[3] A. Rosenfeld and A. C. Kak, Digital Picture Processing, 2nd ed., vol. 1

and 2, Academic Press, New York, 1982.

[4] B. W. Kernighan and D. M. Ritchie, The C Programming Language,

Prentice-Hall, New Jersey, 2nd ed., 1988.

[5] B. W. Kernighan and R. Pike, The UNIX Programming Environment,

Prentice-Hall, New Jersey, 1984.

[6] M. J. Rochkind, Advanced UNIX Programming, Prentice-Hall, New Jer-

sey, 1985.

[7] W. R. Stevens, UNIX Network Programming, Prentice-Hall, New Jersey,

1990.

122

BIBLIOGRAPHY 123

[8] Khoroe Group, Khoros Manuals, vols. 1 and 2, Department of Electrical

and Computer Engineering, University of New Mexico, Albuquerque,

NM, 1991.

[9] J. D. Foiey, A. Van Dam, Computer Graphics: Princiles and Practice,

Addison-Wesley, Reading, Mass., 1990.

[10] W. M. Newman, R. F. Sproull, Principle of Interactive Computer Graph-

ics, McGraw-Hill, New York, 1979.

[11] Stardent Computer, Inc., Dore Reference Manual, 1989.

[12] R. A. Singer, "Estimating Optimal Tracking Filter Performance for

Manned Maneuvering Targets," IEEE Trans. Aerosp. Electron. Syst.,

vol. AES-6, pp. 473-383, July 1970.

[13] R. Berg, "Estimation and Prediction for Maneuvering Target Trajecto-

ries," IEEE Trans, on Automat. Contr, vol. AC-28, pp. 294-304, Mar.

1983.

[14] J. D. Kendrick, P. S. Maybeck and J. G. Reid, "Estimation of Aircraft

Target Motion Using Orientation Measurements" IEEE Trans. Aerosp.

Electron. Syst., vol. AES-17, pp. 254-259, Sept. 1986.

[15] D. Andrisani II, F. P. Kuhl and D. Gleason, "Estimation of Aircraft Tar-

get Motion Using Orientation Measurements," IEEE Trans, on Aerosp.

Electron. Syst, vol. 17, pp. 533-538, Mar. 1986.

[16] J. D. Schiermanand D. Andrisani II, "Tracking Maneuvering Helicopters

Using Attitude and Rotor Angle Measurements," Journal of Guidance,

Control and Dynamics, vol. 13, pp. 92^-935, Nov.-Dec. 1990.

BIBLIOGRAPHY 124

[17] S. A. R. Hepner and H. P. Geering, "Observability Analysis for Target

Maneuver Estimation via Bearing-Only and Bearing-Rate-Only Mea-

surements," Journal of Guidance, Control and Dynamics, vol. 13, pp.

977-983, Nov.-Dec. 1990.

[18] R. J. Fitzgerald, "Simple Tracking Filters: Closed-form Solutions,"

IEEE Trans, on Aerosp. Electron. Syst., vol. AES-17, pp.781-785, Nov.

1981.

[19] A. Gelb (ed.), Applied Optimal Estimation, M.I.T. Press, Cambridge,

MA, 1974.

[20] T. Kailath, Linear Systems, Prentice-Hall, New Jersey, 1980.

[21] G. F. Franklin, J. D. Powell and M. L. Workman, Digital Control of

Dynamic Systems, Addison-Wesley, Reading, Mass., 1990.

